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Spin Precession and Avalanches
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In many magnetic materials, spin dynamics at short times are dominated by precessional motion as
damping is relatively small. We describe how avalanches evolve under these conditions. The growth front
is spread out over a large region and consists of rapidly fluctuating spins often above the ferromagnetic
transition temperature. In the limit of no damping the system will transition to an ergodic state if the initial
instability is large enough, but otherwise can die out. This dynamic nucleation phenomenon is analyzed
theoretically and the implications for real materials are discussed.
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Ferromagnetic systems that are subject to slowly chang-
ing external magnetic fields very commonly show ava-
lanchelike responses [1]. This leads to hysteresis, as
avalanches occur over a very fast time scale resulting in
irreversibility and entropy production.

A large amount of experimental and theoretical work has
been devoted to understanding aspects of this behavior,
such as Barkhausen noise [1], which demonstrates that
there is often a large degree of reproducibility in the
mesoscopic dynamics on repeated cycling of the field
and also interesting critical properties [2,3]. With advances
in experimental techniques, direct tests of the reproduc-
ibility of magnetic memory have been undertaken recently
which highlighted the prominent role of sample disorder
[4].

The theoretical treatments often have relied on simpli-
fied models such as the Ising model to understand these
complex systems. The dynamics of such models have been
purely relaxational, the extreme limit of large damping,
whereby a spin is flipped if the energy of the system is
decreased by doing so, the excess energy being transferred
out of spin degrees of freedom. These models have had a
great deal of success in describing many features of dis-
order ferromagnets, showing fascinating properties, for
instance ‘“‘return point memory”’ (RPM) [2,3].

However, real magnets are typically dominated by pre-
cessional effects on short enough time scales. The Landau-
Lifshitz-Gilbert (LLG) equation [5], contains a preces-
sional term and a dissipative one

ﬁ=—s><(B—ys><B), (1)

dt
where s is a microscopic magnetic moment, B is the local
effective field, and v is a damping coefficient. y measures
the relative importance of damping to precession. It typi-
cally ranges from about 0.01 to 1 in real materials [6].
Therefore in many magnetic materials, there should be an
interesting short time regime where it makes sense to
regard the damping as a perturbation. In fact, it is well
known from micromagnetic simulations of the LLG equa-
tions that there is a short time scale in which the magnetic
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response to the applied field change is strongly influenced
by the finite level of damping in real materials [7] and this
has recently played an important role in the understanding
of spin-torque experiments [8—10]. Furthermore, even
macroscopic and long-time properties, such as hysteresis
loops, are influenced by the level of damping and other
materials properties, as we shall explain in more detail
below.

Throughout this Letter, we only consider the case of zero
thermal noise. This is because we will see that effective
finite temperature behavior is found even in this case and
we want to carefully separate out these two effects.

If we adiabatically lower the external field, taken to be in
the z direction, at some point the system will go unstable
and have an avalanche. This will involve the nonlinear and
possibly chaotic motion of its spins that interact through
ferromagnetic and dipolar interactions.

We will first analyze what happens during the avalanche
when we set 7y to zero. This will describe the dynamics of
the system for short time scales. In this case, the dynamics
conserve energy and are highly nonlinear. So in the ab-
sence of any additional conservation laws, this would
appear to imply that the system’s equilibrium behavior is
ergodic and well described by the microcanonical en-
semble (which is equivalent to a system at a finite
temperature).

However, there is a reason why ergodicity may be
broken, and to our knowledge, this is the first time a
phenomenon of this kind has been pointed out. After the
system initiates an avalanche, energy is transmitted into
neighboring spins, and as usual, some of this will be in the
form of spin waves. This will propagate energy away from
the avalanche region which will decrease the temperature
of the avalanched spins, implying that as time progresses,
the avalanched region becomes cooler. So if neighboring
spins are not recruited, the avalanche will be extinguished.
In this sense, the spin waves act as a damping term even if
there is no damping in the LLG equation. For long times,
still assuming y = 0, the energy will be distributed in all
the degrees of freedom of the entire system, which means
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in the limit of infinite system size, the temperature of the
system will have dropped back down to zero. One is then
left with a system that has produced only a sub-system-size
avalanche and has got trapped in another local minimum.

What we have found numerically is that for zero damp-
ing, an avalanche that is initially large enough will propa-
gate through the whole system causing it to go into a state
of statistical mechanical equilibrium, often at a high tem-
perature, sometimes even above the ferromagnetic transi-
tion temperature. If the initial avalanche is small, the
avalanche will usually die out instead, leading to only a
finite number of spins changing the sign of s,.

We now turn to two-dimensional numerical experiments
to support these claims and study the case of finite damp-
ing. Most real experiments on avalanche dynamics have
been effectively two dimensional [3]. Dipolar forces were
not included as they complicate the analysis by adding an
additional parameter. Their effects will be the subject of
future work.

We consider a Hamiltonian that couples nearest neigh-
bor spins on a two-dimensional square lattice and contains
an anisotropy term where the orientation of the easy axis is
randomized slightly about the z axis and there is disorder in
the ferromagnetic coupling.

H =S a6 0 - B @)
{i.j) i !

where the J;;’s are the ferromagnetic coupling constants
drawn from a uniform distribution with nonzero positive
mean. « is a measure of the anisotropy. We choose the i; to
be random but biased towards the z axis (out of plane). See
Ref. [11] for details. This system is placed in an external
field Bey.-

The system was started at high field and the field was
lowered adiabatically by evolving the system at fixed B,y
until, to a high accuracy, there was no further change in
spin variables. To obtain convergence, the damping was
made finite, y = 1. After this, the field was lowered again.
An avalanche was defined to occur when the maximum s,
among all the spins changed by a finite amount A = 1. At
that point, a successive approximation scheme was initi-
ated to find the precise field at which the transition takes
place, further evolution can then proceed using the same
procedure. When an avalanche of desired size was de-
tected, the system was restarted with the same external
field and preavalanche configuration, but now with a differ-
ent value of damping and the evolution of the system was
recorded.

A common scenario is to find that the whole system will
avalanche for sufficiently low damping, but will have a
sub-system-size avalanche when the damping is above
some critical threshold that depends on the precise con-
figuration right before the avalanche, as well as the level of
disorder. This is demonstrated for a 128 X 128 spin system
in Fig. 1. At y =0.8, the whole system avalanches.

FIG. 1. Snapshots of systems with different damping 7y starting
with the same configuration, during an avalanche, taken at
different times when the avalanches are roughly the same size.
(a) For y = 0.8 and (b) For y = 0.01. The intensity represents
the local spin motion.

Figure 1 shows gray scale images of the motion of the
system for y = 0.8 (a), and y = 0.01 (b), during their
avalanches. The intensity is proportional to |ds/d1].
However, at y = 0.9, the postavalanche cluster of ava-
lanched spins has an approximate diameter of 8 lattice
spacings (not shown). In all cases, the system was started
in the same configuration right before the avalanche. The
motion of the system is confined to the cluster’s surface for
v = 0.8, but is spread out for y = 0.01 in a ringlike
structure, in which the magnetic system has an elevated
effective temperature. In the case of no damping, many
islands in front of the avalanche’s main boundary form and
this elevated temperature range encompasses the entire
avalanche region. After completion of the system-size
avalanche, the entire system continues to move indefinitely
in an ergodic phase.

From these observations, one expects the hysteresis loop
to change rather substantially as one varies the damping in
these simulations. This has been verified directly.

The effective temperature of the avalanche in this model
system is often higher than the transition temperature. It is
high because the preavalanche metastable configuration
has an energy much higher than the minimum 7 = O state.
When the system gets out of its trapped static configuration
it therefore has a lot of excess energy. By considering the
Ising model with low disorder and estimating the critical
external field for avalanches to take place, we find that the
system can have an energy close to zero, which is consis-
tent with our numerical results of a high post-avalanche
temperature [12].

To understand how small damping effects the critical
behavior of avalanches, we choose to study systems in
three dimensions rather than two, as the latter case is still
unclear even for relaxational dynamics [3]. Because of the
computational expense of the LL.G equations, we instead
employed a microcanonical kinetic Ising model that keeps
track of the energy loss, details of which will be published
elsewhere [14]. Aside from the Ising spin variables, each
site has a variable representing the excess energy available
for it to flip. Energy was exchanged randomly with neigh-
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bors, mimicking energy diffusion, sometimes allowing
neighboring spins to gain enough energy to flip. This
excess energy was lost at a rate controlled by a damping
parameter. We find that the critical properties of this micro-
canonical kinetic Ising model are indeed affected by damp-
ing. For example, the avalanche size distribution exponent,
integrated over a hysteresis loop has an exponent that we
measured to be 2.0 = 0.1 for the case of large damping in
agreement with previous results [3]. This is expected to be
universal for any finite damping and large enough ava-
lanches. However, for low damping, we obtained an effec-
tive exponent of 1.4 = 0.1, seen over more than two
decades in 323 systems.

We next turn to the mechanism by which this ergodic
region spreads. As mentioned above, the effective tempera-
ture of the ergodic phase is quite high, with large amplitude
motion over a short time scale. The preavalanche configu-
ration is static and when these two regions are connected
together, there will be energy transfer between them. One
would expect that over a large scale, Fourier’s law should
hold, so that the temperature in the ergodic region will heat
up the metastable region and upon receiving this thermal
energy, the metastable region will now have the opportu-
nity to thermally hop into the stable phase.

We will now construct a simple one-dimensional model
that attempts to capture the above physics. We use a
variable ¢; to denote if site i is part of an ergodic region,
¢, = 1, or metastable region, ¢»; = 0. There is a tempera-
ture field, which starts off being zero in the metastable
region and a nonzero constant 7|, for the ergodic sites that
seed the avalanche. This temperature corresponds to the
energy released per spin when it becomes part of the
ergodic region. The equation

oT 0,
— =DV’T + T,(1 + n;)—*
ot 0( 771) dt

—vT 3)

describes thermal diffusion with diffusion coefficient D,
but adds a source term when the region becomes ergodic.
In this case, V? is a discretized second derivative, « T; | —
2T; + T,—;. We have also included for the sake of general-
ity, a last term, »7, which is related to the damping in the
system. This gives a time scale for the temperature to die
out. For example, in Fig. 1(a), large v corresponds to high
temperature only on the surface of the cluster, whereas for
low v in Fig. 1(b), it persists over a fairly thick surface
layer. However the case of v = 0 (i.e., no damping) will be
the focus of study below. Finally, we added a random
component 7; to T to study the effects on disorder on
this system.

The probability per unit time that ¢; will go from 0 to 1
is r(#), which we can take, for example, to be of the
Arrhenius form r, = vyexp(—1/T;), where T; is the (di-
mensionless) temperature on site i.

Together these define a simple model for the disappear-
ance of the metastable region. We are now in a position to

analyze under what circumstances an avalanche propagates
and when it dies out. We find that for sufficiently large T,
and initial width w,, of the ergodic seeded region, the
avalanche propagates indefinitely, but dies out if these
two quantities are too small. We have studied this numeri-
cally for the case of Arrhenius activation r = r, mentioned
above. The results are shown in Fig. 2 (“‘+”” symbols are for
7n; = 0). The + symbols are the 50% probabilities of an
avalanche propagating indefinitely; below the line they will
die out.

As the avalanche propagates, the temperature at the
surface will be T, implying that the temperature in the
interior will be almost constant with the same value. As the
temperature diffuses to sites with ¢ = 0, there is a finite
probability of spins crossing to ¢ = 1. To estimate the
boundary as a function of 7y and width w, we assume that
for small T that r(T) is a rapidly increasing function of T If
the initial ergodic region is a top hat function at tempera-
ture Ty, then for large w, there is a long time when the
temperature field next to the boundary will approach T /2.
This time 7 will scale as w?. Therefore, the probability p
that a site next to the boundary will change to ¢ = 1
should equal r(T,/2)w? [15] for p < 1. If it does not
succeed in crossing during this time 7, the avalanche will
die out, otherwise it will continue to propagate. As the
avalanche spreads, w increases meaning that p increases so
that it is easier to seed new sites. Therefore, we expect the
requirement for an avalanche to propagate is that
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where c is a constant. The solid line is a best fit in Fig. 2 for
the constant ¢ in wy = ¢ exp(1/T}). Given the simplicity of
the estimate, the agreement is excellent.
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FIG. 2 (color online). The boundary between avalanche propa-
gation and extinction for the one dimensional model discussed in
the text v = 0. The + symbols are the numerical values and the
solid line is an analytical fit to the data. The X symbols are for
systems with quenched disorder with —1 < x; < 1.
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Local one-dimensional models of avalanches with ran-
domness will often not show a transition to propagation
because there is a finite probability that at some time it will
encounter conditions causing extinction. The difference
here is that the temperature field widens with increasing
time. So if a site adjacent to the ergodic region fails to
thermally hop, in the mean hopping time, the temperature
field will take longer to die away with increasing w, and
therefore the probability of extinction rapidly goes to zero
as the width increases, again for » = 0. As a result, the
model is also quite insensitive to the addition of disorder as
shown by the X symbols in Fig. 2.

Therefore, for a zero temperature magnetic system with
no spin damping, we expect that an initial disturbance will
likely propagate if its size is above some threshold value,
causing a transition between a static configuration and one
at some effective finite temperature. Of course, if there is
any coupling to degrees of freedom other than spin, so that
v >0, the motion will die out and the spins will stop
moving. In such a case, the avalanched spins will lose their
energy and cool down to zero temperature. The system is
locally being annealed at a finite rate. The finite damping
case for Eq. (3), with v > 0 can also be analyzed. In this
case it is quite similar to heat balance models for explosive
crystallization [16], which show many interesting proper-
ties [17,18]. Instead of the temperature field at the front
widening indefinitely, it should be of finite width, leading
to a finite probability, per unit time, of the avalanche dying
out. Thus one expects that in one dimension, propagation
will always terminate eventually. In three dimensions,
because the surface area of the front is increasing, we do
expect to see infinite sized avalanches for sufficiently small
disorder.

‘We now consider the issue of RPM. For the proof of it to
be valid, a no passing rule must be satisfied [2,19]. In the
case of strong precession, this rule can be violated, unlike
the relaxational dynamics needed to give RPM, where this
can never happen. On the other hand, over a large enough
scale, it may be unlikely that a coarse grained variable will
violate RPM but nevertheless it is possible for this to occur.

In conclusion, we have described how the evolution of
avalanches is altered by the more realistic inclusion of
precessional motion. For finite but small damping, the
growth front becomes spread out over a large region, for
which the spins inside can be described, for short times, by
an ergodic system of rapidly fluctuating spins at high
temperature. For longer times, interior spins slowly anneal
to a low temperature state. We have found a new mecha-
nism that describes the growth or termination of ava-
lanches. An initial disturbance can terminate even when
there is no damping due to the diffusion of energy away
from a growth front, but if the initial disturbance is above a
critical size, will likely continue to propagate indefinitely.

J.M.D. thanks A.P. Young, L. B. Sorensen, and Trieu
Mai for useful discussions.
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