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The Landau-Lifshitz equation reliably describes magnetization dynamics using a phenomenological
treatment of damping. This Letter presents first-principles calculations of the damping parameters for Fe,
Co, and Ni that quantitatively agree with existing ferromagnetic resonance measurements. This agreement
establishes the dominant damping mechanism for these systems and takes a significant step toward
predicting and tailoring the damping constants of new materials.
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Magnetic damping determines the performance of mag-
netic devices including hard drives, magnetic random ac-
cess memories, magnetic logic devices, and magnetic field
sensors. The behavior of these devices can be modeled
using the Landau-Lifshitz (LL) equation [1]

 

_m � �j�jm�Heff �
�

m2 m� �m�Heff�; (1)

or the essentially equivalent Gilbert (LLG) form [2,3]. The
first term describes precession of the magnetization m
about the effective field Heff , where � � g�0�B=@ is the
gyromagnetic ratio. The second term is a phenomenologi-
cal treatment of damping with the adjustable rate �. The
Gilbert form replaces this term with �m̂� _m using the
dimensionless damping constant � � �=�m. The LL(G)
equation adequately describes dynamics measured by tech-
niques as varied as ferromagnetic resonance (FMR) [4],
magneto-optical Kerr effect [5], x-ray absorption spectros-
copy [6], and spin-current driven rotation with the addition
of a spin-torque term [7,8].

Access to a range of damping rates in metallic materials
is desirable when constructing devices for different appli-
cations. Empirically, doping NiFe alloys with transition
metals [9] or rare earths [10] has produced compounds
with damping rates in the range of � � 0:01 to 0.8. A
recent investigation of adding vanadium to iron resulted
in an alloy with a decreased damping rate [11]. Unfortu-
nately, the damping rate of a new material cannot be
predicted because there has not yet been a first-principles
calculation of damping that quantitatively agrees with
experiment. The challenging pursuit of new materials
with specific or lowered damping rates is further compli-
cated by the expectation that, as device size continues to be
scaled down, material parameters, such as �, should
change [12]. A detailed understanding of the important
damping mechanisms in metallic ferromagnets and the
ability to predictively calculate damping rates would
greatly facilitate the design of new materials appropriate
for a variety of applications.

The temperature dependence of damping in the transi-
tion metals has been carefully characterized through mea-
surement of small angle dynamics by FMR [13,14]. While
one might naı̈vely expect damping to increase monotoni-
cally with temperature, as it does for Fe, both Co and Ni
also exhibit a dramatic rise in damping at low temperature
as the temperature decreases. These observations indicate
that two primary mechanisms are involved. Subsequent
experiments [15,16] partition these nonmonotonic damp-
ing curves into a conductivitylike term that decreases with
temperature like the conductivity and a resistivitylike term
that increases with temperature like the resistivity. The two
terms were found to give nearly equal weight to the damp-
ing curve of Ni.

A number of mechanisms for damping in these systems
have been proposed [14,17–24]. See the review by
Heinrich [25] for a more complete discussion. However,
none of the models have been shown to quantitatively
agree with measured values. The torque-correlation model
of Kambersky [17] qualitatively matches the data, but has
not been quantitatively evaluated in a rigorous fashion.
Here, we report first-principles calculations of the
Landau-Lifshitz damping constant according to
Kambersky’s torque-correlation expression. Quantitative
comparison of the present calculations to the measured
FMR values [13] positively identifies this damping path-
way as the dominant effect in the transition metal systems.
In addition to presenting these primary conclusions, we
also describe the relationship between the torque-
correlation model and the more widely understood breath-
ing Fermi surface model [18,21], showing that the results
of both models agree quantitatively in the low scattering
rate limit.

The breathing Fermi surface model of Kambersky pre-
dicts

 � �
g2�2

B

@

X
n

Z dk3

�2��3
���n;k�

�
@�n;k
@�

�
2 	
@
: (2)

This model offers a qualitative explanation for the low
temperature conductivitylike contribution to the measured
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damping. The model describes damping of uniform pre-
cession as due to variations @�n;k=@� in the energies �n;k of
the single-particle states with respect to the spin direction
�. The states are labeled with a wave vector k and band
index n. As the magnetization precesses, the spin-orbit
interaction changes the energy of the electronic states,
pushing some occupied states above the Fermi level and
some unoccupied states below the Fermi level. Thus,
electron-hole pairs are generated near the Fermi level
even in the absence of changes in the electronic popula-
tions. The � function in Eq. (2) is the negative derivative of
the Fermi function and picks out only states near the Fermi
level to contribute to the damping. g is the Landé g factor
and �B is the Bohr magneton. The electron-hole pairs
created by the precession exist for some lifetime 	 before
relaxing through lattice scattering. The amount of energy
and angular momentum dissipated to the lattice depends on
how far from equilibrium the system gets; thus, damping
by this mechanism increases linearly with the electron
lifetime as seen in Eq. (2). Since the electron lifetime is
expected to decrease as the temperature increases, this
model predicts that damping diminishes as the temperature
is raised.

Because the predicted damping rate is linear in the
scattering time, the damping rate cannot be calculated
more accurately than the scattering time is known. For
this reason it is not possible to make quantitative compari-
sons between calculations of the breathing Fermi surface
and measurements. Further, while the breathing Fermi
surface model can explain the dramatic temperature de-
pendence observed in the conductivitylike portion of the
data it fails to capture the physics driving the resistivitylike
term. This is a significant limitation from a practical per-
spective because the resistivitylike term dominates damp-
ing at room temperature and above and is the only
contribution observed in iron [13] and NiFe alloys [26].

Kambersky’s torque-correlation model predicts
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and we will show that it both incorporates the physics of
the breathing Fermi surface model and also accounts for
the resistivitylike terms. The matrix elements ��nm�k� �
hn; kj�
�; Hso�jm; ki measure transitions between states
in bands n and m induced by the spin-orbit torque. These
transitions conserve wave vector k because they describe
the annihilation of a uniform precession magnon, which
carries no linear momentum. The nature of these scattering
events, which are weighted by the spectral overlap
Wnm�k� � �1=��

R
d!1��!1�Ank�!1�Amk�!1�, will be

discussed in more detail below. The electron spectral func-
tions Ank are Lorentzians centered around the band ener-
gies �nk and broadened by interactions with the lattice. The
width of the spectral function @=	 provides a phenomeno-
logical account for the role of electron-lattice scattering in
the damping process. The � function is the same as in

Eq. (2) and enforces the requirement of spectral overlap at
the Fermi level.

Equation (3) captures two different types of scattering
events: scattering within a single band, m � n, for which
the initial and final states are the same, and scattering
between two different bands, m � n. As explained in
[17] the overlap of the spectral functions is proportional
(inverse) to the electron scattering time for intraband (in-
terband) scattering. From this observation the qualitative
conclusion is made that the intraband contributions match
the conductivitylike terms while the interband contribu-
tions give the resistivitylike terms. Evaluation of Eq. (3) is
more computationally intensive than that of the breathing
Fermi surface model and until now only a few estimates for
Ni and Fe have been made [19].

We have performed first-principles calculations of the
torque-correlation model Eq. (3) with realistic band struc-
tures for Fe, Co, and Ni. Prior to evaluating Eq. (3) the
eigenstates and energies of each metal were found using
the linear augmented plane wave method [27] in the local
spin density approximation [28–30]. Details of the calcu-
lations for these materials are described in [31]. The ex-
change field was fixed in the chosen equilibrium
magnetization direction. Calculations of Eq. (3) presented
in this Letter are converged to within a standard deviation
of 3%, which required sampling �160�3 k points for Fe,
�120�3 for Ni, and �100�2 k points in the basal plane by 57
along the c axis for Co. Electron-lattice interactions were
treated phenomenologically as a broadening of the spectral
functions. The Fermi distribution was smeared with an
artificial temperature. Results did not vary significantly
with reasonable choices of this temperature since the
broadening of the Fermi distribution was considerably
less than that of the bands. The damping rate was calcu-
lated for a range of scattering rates (spectral widths) just as
damping has been measured over a range of temperatures.

The results of these calculations are presented in Fig. 1
and are decomposed into the intraband and interband
terms. The downward sloping line in Fig. 1 represents
the intraband contribution to damping. Damping constants
were recently calculated using the breathing Fermi surface
model [12,21] by evaluating the derivative of the electronic
energy with respect to the spin direction according to
Eq. (2). The results of the breathing Fermi surface predic-
tion are indistinguishable from the intraband terms of the
present calculation even though the computational ap-
proaches differed significantly; the agreement is quantified
in Table I.

The breathing Fermi surface model could not be quanti-
tatively compared to the experimental results because the
temperature dependence of the scattering rate has not been
determined sufficiently accurately. While the present cal-
culations also require knowledge of the scattering rate to
determine the damping rate, the nonmonotonic depen-
dence of damping on the scattering rate produces a unique
minimum damping rate. In the same manner that the
calculated curves of Fig. 1 have a minimum with respect
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to scattering rate, the measured damping curves exhibit
minima with respect to temperature. Whatever the relation
between temperature and scattering rate, the calculated
minima may be compared directly and quantitatively to

the measured minima. Table I makes this comparison. The
agreement between measured and calculated values shows
that the torque-correlation model accounts for the domi-
nant contribution to damping in these systems.

Our calculated values are smaller than the measured
values. Using measured g values instead of setting g � 2
would increase our results by a factor of �g=2�2, or about
10% for Fe and 20% for Co and Ni. Other possible reasons
for the difference include a simplified treatment of
electron-lattice scattering in which the scattering rates for
all states were assumed equal, errors associated with using
wave functions found from the mean-field local spin den-
sity approximation, and numerical convergence (discussed
above). Additionally, the extraction of damping rates from
the measured linewidths remains challenging for Fe and
particularly for Co. Other damping mechanisms may also
make small contributions [22–24].

Since the manipulations involved with the equation of
motion techniques employed in deriving Eq. (3) obscure
the underlying physics we now discuss the two scattering
processes and connect the intraband terms to the breathing
Fermi surface model. The intraband terms in Eq. (3) de-
scribe scattering from one state to itself by the torque
operator, which is similar to a spin-flip operator. A spin-
flip operation between some state and itself is only nonzero
because the spin-orbit interaction mixes small amounts of
the opposite spin direction into each state. Since the initial
and final states are the same, the operation is naturally spin
conserving. The matrix elements do not describe a real
transition, but rather provide a measure of the energy of the
electron-hole pairs that are generated as the spin direction
changes. The electron-hole pairs are subsequently annihi-
lated by a real electron-lattice scattering event.

To connect the derivatives @�=@� in Eq. (2) and the
torque matrix elements in Eq. (3) we imagine first pointing
the magnetization in some direction ẑ. The only energy that
changes with the magnetization direction is the spin-orbit
energy Hso. As the spin of a single-particle state ji rotates
along �̂ about x̂ its spin-orbit energy is given by ���� �
hjei
x�Hsoe�i
x�ji. The derivative with respect to � is
@����=@� � ihjei
x��
x;Hso�e�i
x�ji. Evaluating this de-
rivative at the pole (� � 0) gives @�=@� � ihj�
x;Hso�ji.
Similarly, rotating the spin along �̂ about ŷ leads to

TABLE I. Calculated and measured [13] damping parameters. Values for � are reported in 109 s�1 while those for � are
dimensionless. Values in the first four columns indicate minima of the calculated or measured curves. The last two columns list
calculated damping due to the intraband contribution from Eq. (3) and from the breathing Fermi surface model [12], respectively.
Values for �=	 are given in 1022 s�2. Published numbers from [12,13] have been multiplied by 4� to convert from the cgs unit system
to SI.

�calc �calc �meas �calc=�meas ��=	�intra ��=	�BFS

bcc Fe h001i 0.0013 0.54 0.88 0.61 1.01 0.968
bcc Fe h111i 0.0013 0.54 � � � � � � 1.35 1.29
hcp Co h0001i 0.0011 0.37 0.9 0.41 0.786 0.704
fcc Ni h111i 0.017 2.1 2.9 0.72 6.67 6.66
fcc Ni h001i 0.018 2.2 � � � � � � 8.61 8.42
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FIG. 1. Calculated Landau-Lifshitz damping constant for Fe,
Co, and Ni. Thick solid curves give the total damping parameter
while dotted curves give the intraband and dashed lines the
interband contributions. Values for � are given in SI units. The
right axis is the equivalent Gilbert damping parameter and the
top axis is the full width half maximum of the electron spectral
functions.
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@�=@� � ihj�
y;Hso�ji. The torque matrix elements in
Eq. (3) are �� � hj�
�; Hso�ji � hj�
x;Hso�ji �

ihj�
y;Hso�ji. Using the relations between the commuta-
tors and derivatives just found the torque is �� �
�i�@�=@��x � �@�=@��y, where the subscripts indicate
the rotation axis. Squaring the torque matrix elements
gives j��j2 � �@�=@��2x 	 �@�=@��2y. For high symmetry
directions �@�=@��x � �@�=@��y and we deduce j��j2 �
2�@�=@��2 demonstrating that the intraband terms of the
torque-correlation model describe the same physics as the
breathing Fermi surface.

The monotonically increasing curves in Fig. 1 indicate
the interband contribution to damping. Uniform mode
magnons, which have negligible energy, may induce qua-
sielastic transitions between states with different energies.
This occurs when lattice scattering broadens bands suffi-
ciently so that they overlap at the Fermi level. These wave
vector conserving transitions, which are driven by the
precessing exchange field, occur primarily between states
with significantly different spin character. The process may
roughly be thought of as the decay of a uniform precession
magnon into a single electron spin-flip excitation. These
events occur more frequently as the band overlaps increase.
For this reason the interband terms, which qualitatively
match the resistivitylike contributions in the experimental
data, dominate damping at room temperature and above.

We have calculated the Landau-Lifshitz damping pa-
rameter for the itinerant ferromagnets Fe, Co, and Ni as a
function of the electron-lattice scattering rate. The intra-
band and interband components match qualitatively to
conductivity and resistivitylike terms observed in FMR
measurements. A quantitative comparison was made be-
tween the minimal damping rates calculated as a function
of scattering rate and measured with respect to tempera-
ture. This comparison demonstrates that our calculations
account for the dominant contribution to damping in these
systems and identify the primary damping mechanism. At
room temperature and above, damping occurs overwhelm-
ingly through the interband transitions. The contribution of
these terms depends in part on the band gap spectrum
around the Fermi level, which could be adjusted through
doping.
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[17] V. Kamberský, Czechoslovak Journal of Physics, Section

B 26, 1366 (1976).
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