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A generic model of a kinetic plasma formed from a source and sink is presented which without
instability would form a strongly unstable state due to a single mode. Instead, the resulting wave-particle
resonant interaction maintains the distribution near a marginally stable state through the continual
production of fast frequency-sweeping modes that sweep unidirectionally (upward in our case) throughout
the energy-inverted region of the distribution function. The energy of these modes can be channeled to the
background plasma through wave dissipation and, in our particular example, one quarter of the injected
energy is available to be channeled.
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In this Letter, we explore a basic wave-particle interac-
tion in a thermal plasma with a substantial energetic par-
ticle beam. In particular we consider a regime in which the
beam is so strong that the dispersion relation for linear
waves is qualitatively different to its form when beams are
absent. This is relevant to the ITER tokamak, currently
under construction, which is predicted [1] in some situ-
ations to be unstable to energetic particle modes (EPMs)—
modes that do not exist in the absence of energetic parti-
cles. The kinetic beam of particles we study here is para-
digmatic for how alpha particles can relax in a burning
plasma. In our model plasma, continually frequency-
sweeping (or ‘‘chirping’’) modes are generated spontane-
ously and we suggest that these modes might be an energy
channeling mechanism [2,3] for transferring a significant
fraction of energetic particle energy to the plasma.

If the energy density fraction of energetic particles (EPs)
relative to the (stable) thermal plasma is small, then the
mode frequency ! is not significantly affected by them
(i.e. �!� !) and the growth rate � (typically j�j � !)
is determined by EP-driven resonant instabilities. Such a
scenario may be classified as ‘‘perturbative’’ [4]. Previous
numerical studies for this case [5] identified bifurcations
and frequency sweeping, similar to the analytic theory of
Refs. [6,7]. If the energy density of the EPs is sufficiently
large, EPMs are generated; experimental examples of such
‘‘nonperturbative’’ phenomena include the fishbone mode
[8–10] and other shear Alfvénic-like activity [4,11–13]. In
this Letter we present results of a generic plasma model
with sufficiently strong injection to generate a nonper-
turbative response. Then spontaneously driven chirping
modes arise which force the particle distribution to hover
near a marginally stable state that is far from what would
be observed in the absence of waves. As a result of the
nonlinear particle interaction with the chirping modes, a
significant fraction (�25% in our simulation) of the beam
particle energy is transported to lower energies. In con-
ventional quasilinear theory [14] a spectrum of fixed-
frequency linear waves is needed to cause relaxation of
the distribution function to a marginal state; in this Letter

a single chirping mode causes relaxation to marginal
stability.

Our generic plasma model uses electrostatic waves with
a single particle species and includes terms that represent
fast particle injection, extrinsic background field damping
and an annihilation term that models collisions [15,16].
This is the simplest example one can consider when in-
vestigating the consequence of a discrete wave-particle
interaction. Here we use it to illustrate what may happen
in the more complex Alfvén wave-energetic particle inter-
action, where, despite the added complexity, one can show
through the use of action-angle variables that a similar
description governs the nonlinear dynamics [17]. The ki-
netic equation for the distribution function f�x; v; t� sat-
isfies the Vlasov equation modified by a model source term
and collision operator:
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where �Fbeam represents the injected EP beam and Fth the
thermal background. In the absence of waves (i.e., E � 0),
this equation drives f ! F0 � Fth � Fbeam at a rate �. The
electric field E�x; t� is determined by a consistent electro-
static equation, except for an extrinsic damping term that is
added to the basic equation:
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where f0 denotes the spatial mean of f: the third term in
Eq. (2) ensures that the left-hand side of this equation is
equivalent to the Poisson operator for an electrostatic
wave. The right-hand side can be viewed as modeling
dissipative processes that are not otherwise described by
the kinetic equation governing the distribution f, and
which we view as due to additional charge-neutral cur-
rents that respond to applied fields in a linear resistive
manner. The time scale is normalized to the inverse plasma

frequency !�1
p �

�������������������
m"0=nq2

p
. Spatial lengths are normal-

ized to the Debye length, velocities to the thermal speed
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vth �
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kBT=m

p
, and E to �m=q�vth!p, where m, q, T, and

n are the species’ mass, charge, temperature, and number
density, respectively. For the simulation described in this
Letter we take

 �2��1=2Fth � � exp��v2=2�; (3)

 �2��1=2Fbeam���1���=va	exp���v�vb�
2=2v2

a	; (4)

where we choose � � 0:5, va � 1:0, vb � 6:0, and
��d; �� � �0:4; 2
 10�4�. The spatial interval is periodic
with period L � 8�. If f � F0 the system is unstable
(! � 0:829� 0:243i) for a mode with the wavelength
L � 8�, while it is linearly stable for the allowed shorter
wavelengths (L=n, with n � 2).

The simulation is initialized with f�x; v; t � 0� �
Fth�v� and E�x; t � 0� � 0. The system evolves at first
by constitution of the beam at the injection rate �: f �
Fth � ��t�Fbeam where ��t� � 1� exp���t�. Once the
beam density � exceeds the critical value �crit � 0:075,
the system becomes linearly unstable with respect to
modes of wavelength L. The long time behavior of the
system is shown in Fig. 1: the field undergoes repeated fast
frequency-sweeping (chirping) events; the modes sweep
predominantly upwards and have the form �! / �t, in
contrast to the perturbative result for which there is a
predominantly symmetric chirp produced with �! /
�

�����
�t
p

[6].
We now consider the snapshot of f0 at t � 9750 shown

in Fig. 2; this time is chosen because it is the time at which
the structure shown in Fig. 5 (to be discussed later)
achieves its maximum amplitude. The spatially averaged
distribution f0�v� is shown as a solid line; the steady-state
equilibrium solution distribution F0�v� is shown as a dotted
line for comparison. The arrows indicate the phase velocity
of modes excited in the plasma at that instant: these are
calculated by taking a cross section through Fig. 1 and
extracting the maxima, whose positions give the frequen-
cies (which are transformed to velocities via v � !=k).
We note that the energy difference between f0 and F0 is

large and that the waves’ phase velocities correspond to
holes in f0 whose velocities increase in time. In contrast to
the previously reported perturbative case [5–7], the long
time evolution of the distribution function is not a small
perturbation about the state (f � F0, E � 0).

A snapshot of the distribution function f�x; v� at the
same time t � 9750 is shown in Fig. 3. This Figure dem-
onstrates the complexity of the dynamics. At least three
islands are visible in this plot with phase velocities of 5.4,
3.5, and 6.6 (in order of size), corresponding to the density
holes shown in Fig. 2. If we write E � E1 cos�kx�!t�
��, then the trapping width in velocity space �v �
4
�����������
E1=k

p
. Using E1 � 0:069 from Fig. 5 gives a trapping

width �v � 2:1, which is about 40% less than what is
observed. This is because the island is compressed in v on
both sides by other trapping islands. (When there is no
adjacent trapping region, the expression used for the island
width is verified.)

These phase space structures sweep over a velocity
space domain that is large compared to the instantaneous
trapping width. This can be seen from Fig. 1 (using the
relation phase velocity v� � !=k). This large sweep en-
ables a single phase space structure to extract much more
energy from a broader band of energetic particles velocities
than a single stationary mode. We expect that the contin-
uously chirping distribution function will hover close to a
relaxed distribution function that is at marginal stability
(i.e., the distribution’s most unstable mode is marginally
stable), in much the same way that a multimode quasilinear
system with sources and sinks would be close to marginal
stability [18]. This motivates a study of the linear stability
of a relaxed steady-state uniform distribution F�v� [not
F0�v�]. The dispersion relation is D�!; k� � 0, where, for
real ! and k > 0, and denoting the principal part by P,

 ReD�!; k� 
 Dr�!; k� � k2 � P
Z �1
�1

dF
dv dv

v�!=k
; (5)

FIG. 1. Field mode spectrum ~E1�!; t� from generic model
simulation exhibits nonperturbative frequency sweeping: �! /
�t. The logarithmic gray scale has range [0.001, 0.08].
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FIG. 2. A snapshot of f0�v� at t � 9750 (solid line) and F0�v�
(dashed line). The arrows show the phase velocities of the modes
present at this time, all of which are increasing.
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Returning to Fig. 2, we observe that there is a region in
velocity H � �v: v1 < v< v2	 over which the distribu-
tion function is maintained far from F0�v� by the sweeping
of the phase space structures. Figure 4 shows that in this
region the long time average f0�v� varies approximately
linearly in velocity, while outside the region being swept,
f0 � F0. To test the hypothesis that the system persists
near marginal stability we construct a candidate distribu-
tion F�v� that is marginally stable, varies linearly in ve-
locity in the region where the distribution is strongly
distorted, and continuously links to F0�v� outside the
distorted region. We then compare F�v� to the tem-
porally averaged distribution observed in the simulation.
Thus the conditions onF are: (a)

R
F�v�dv � 1 (which can

be shown to time asymptotically follow from the zeroth
space and velocity moment of Eq. (1); (b) F�v� �
b�v� v1� � F0�v1� if v 2H (b, v1, and v2 to be deter-
mined); (c) F�v� � F0�v� if v =2H ; (d) F�v� satisfy the
marginal stability criterion. For our input parameters these
conditions yield the solution v1 � 1:69, v2 � 7:02, b �
0:0133; the real part of the dispersion relation gives the
phase velocity v� � 2:39. The candidate distribution F�v�
is plotted in Fig. 4 and can be compared with the temporal
average of f0: �f0�v� � �t2 � t1��1

Rt2
t1 f0�v�dt, which is

also plotted. This distribution is independent of (t1, t2) in
the limit that t1 and (t2 � t1) are large; for this plot we
chose t1 � 5
 104 and t2 � 105. We note that �f0�v� and
F�v� are comparable, although the slope of the averaged
distribution is somewhat less than the slope of the candi-
date distribution. This indicates that on average the system
is slightly stable in linear theory to a nonperturbative mode.
An analysis of the chirp onset condition for nonperturba-
tive modes near marginal stability given in Ref. [19] in-
dicates that the upward direction of the chirp is preferred
for our instability. Furthermore, at the initial excitation of a
marginally stable mode, the phase velocity is much closer

to the minimum of f0�v� than its maximum. Consequently,
the holes can move a large distance in increasing velocity,
but any clumps that are formed cannot sweep very far
before being subsumed by the thermal bulk. A magnifica-
tion of Fig. 1 shows that many hole-clump pairs form, but
the holes are short lived.

The theoretically calculated sweeping formula calcu-
lated in [6] and generalized in [17] shows that background
dissipation forces the trapping region (which is locked to
the mode frequency) to move in phase space to where the
trapping structure has lower energy (note that phase space
holes have lower energy where particles have higher en-
ergy) and thereby energy is released to balance the dis-
sipation [20]. This model then predicts �! / t1=2 when the
linear dielectric function Dr�!�, in the electrostatic charge
relation iDr�!�kE�!� � �hole�!� [here E�!� is the
Fourier-transformed electric field and �hole is the hole
charge density], is expanded linearly about the frequency
of its marginal stability point !0, i.e., where Dr�!0� � 0

so that Dr�!� � �!�!0�
@Dr�!0�
@! . This theoretical model

for sweeping has been recalculated for the nonperturbative
regime keeping the exact form for Dr�!� (where ! is real)
with otherwise the same assumptions as Ref. [6]. The
equilibrium distribution chosen is F�v� as calculated
above. The resulting theoretical calculations for phase
velocity and amplitude are plotted with the results from
the simulation in Fig. 5. The simulation quantities are for a
single structure that has been isolated by taking the max-
ima for each point in time from Fig. 1 and then searching
for connected structures with lifetime 	 > 500. The only
fitting parameter is the time offset. The comparison be-
tween theory and simulation is good; deviations are likely
to result from interactions between adjacent structures in
the simulation (which we already know affects the island
width) and mixing of trapped and passing particles, neither
of which is included in the current theoretical modeling.

FIG. 3. A snapshot of f�x; v� also at t � 9750. Several islands
are visible in this plot; over time their phase velocities increase,
corresponding to an increase in the frequency of the associated
modes.
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FIG. 4. The long time average �f0�v� (the solid line) is observed
to be approximately linear across the wide region (v1, v2) where
it differs from F0�v� (the dotted line). The dashed line shows the
marginal stability distribution F�v� predicted by the theory
described in the text.
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The maintenance of a marginal state by chirping modes
suggests a variant of energy channeling first proposed by
Fisch and Rax [2]. From Eqs. (1) and (2), the rate of change
of stored energy is found to be

 

dE
dt
� �L

Z �1
�1

1

2
v2�F0 � f0�dv� �d

Z L

0
E2dx: (7)

We note that the system eventually hovers about marginal
stability where the stored energy remains roughly constant
so that on average the left-hand side of Eq. (7) vanishes.
Thus, time averaged energy transfer takes the form

 �L
Z �1
�1

1

2
v2F0dv � �L

Z �1
�1

1

2
v2f0dv� �d

Z L

0
E2dx:

(8)

This expression shows that the input power on the left-hand
side from EP injection is balanced by both the classical
output power mechanism of EPs (in our modeling it is due
to the particle annihilation) and the power extracted by
dissipation of the excited waves that chirp predominantly
upward in frequency. The ratio of the first to second terms
on the right-hand side is found to be 3:1. In a physical
system both energetic particle energy extracted by colli-
sions (modeled here by annihilation) and wave power
extracted by dissipation would be absorbed by the back-
ground plasma. Provided the energy being extracted
through both channels heats the plasma and energetic
particles are not lost to the walls, the background plasma

will be heated at the rate at which beam power is supplied.
In our model a significant part of the heating of the plasma
background is through the chirping wave channel. As a
result, the actual near-steady-state energetic particle distri-
bution function established is 25% less energetic than the
one that is predicted from the classical transport process
(here annihilation) alone. Such a reduction of stored energy
could prevent other energetic particle instabilities being
excited. If one can establish this type of benign chirping
mechanism in a burning fusion plasma experiment, where
the energetic alpha particles transfer comparable or more
power through the wave heating channel than through the
electron drag channel, a higher fusion power output could
be achieved [21].
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FIG. 5. Analysis of a single structure. Simulation (solid line)
and theory (dashed line) show good agreement for both phase
velocity and mode amplitude.
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