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Through a new rigorous Bloch-mode formalism, we theoretically study the generation of photons in
single-row-defect photonic-crystal waveguides. In contrast with previous related works relying on a
reinforcement of the spontaneous emission (SE) through microcavity effects, we explore situations for
which the SE into radiation modes is reduced to a very low level while the SE into the guided mode is
maintained at a level comparable to that in the bulk material. Remarkably large SE � factors in excess of
95% are obtained, and since no resonance effect is involved, this efficiency is achieved over a 40-nm-large
spectral interval at � � 950 nm.
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It has been recognized for some time that a new genera-
tion of optoelectronic devices like low-threshold lasers or
single-photon sources can be drastically improved in terms
of noise and speed modulation if their radiation pattern is
highly directed toward a single mode and if the fraction of
spontaneous emission (SE) coupled into this mode is made
close to unity [1]. For low excitation, this fraction is
defined as the SE coupling factor �. But in general, not
all the radiation funnels into a single mode and a portion �
of the SE radiates out of this mode. This limitation has
motivated the concept of 3D photonic-band-gap materials
[2], which theoretically provides vanishing �’s. Never-
theless, in planar systems, only 2D photonic band gaps
are achievable and up to now the main approach for
increasing � has consisted in using the dynamic
funneling of the photons (Purcell effect) provided by mi-
crocavities. Little is known on optical mechanisms for
decreasing �. In fact, such mechanisms rely on the sup-
pression of the dipole-field coupling over all radiation
modes and thereby touch difficult computational problems
in electromagnetism.

In this Letter, we show that remarkably high �’s can be
achieved in photonic-crystal (PC) planar systems without
any frequency-selective microcavity effect. We first
present a general formalism for the light-emission calcu-
lation of a quantum dot (QD) in periodic waveguides. This
derivation is motivated by the increasing use of PC wave-
guides for cavity quantum electrodynamics experiments
[3] and nanocavity lasers [4]. Then we study the PC
waveguide of Fig. 1(a) and design the line defect so as to
minimize �. While the total SE rate in the engineered
structure remains comparable to that in the bulk, � is
reduced to such an extent that � factors in excess of 95%
are observed for the two in-plane dipole orientations.
Moreover, since the approach does not rely on any reso-
nance effect, the efficient photon collection is achieved
over a wide 40-nm spectral bandwidth at � � 950 nm,
releasing the restrictive atom-cavity spectral matching re-
quired in cavities.

In the electromagnetic description adopted here and in
the weak coupling regime, the � factor of the PC wave-
guide can be predicted by calculating the classical photonic
local density of states (LDOS) [5], and then by differenti-
ating from the total field the relative weight of the guided
and radiative contributions. To calculate the LDOS, one
possible approach consists of using a finite computational
window with perfectly matched layers (PMLs) in all direc-
tions [6]. For z-periodic waveguides, PMLs can be effi-
ciently incorporated in the translational invariant x and y
directions; see Fig. 1. However, the periodic z direction is
more problematical. PML-like absorbing boundaries have
been recently optimized for handling terminations in the
periodic directions [7]; nevertheless, they break the peri-
odicity and thus the source emission is inevitably spoiled
by the backscattered light, especially for small group ve-
locities. Hereafter, we overcome this theoretical difficulty
by analytically handling the z direction [8]. Overall, with
the analytical treatment and the PMLs, the new system
shown in Fig. 1(b) can be rigorously treated on a finite
transversal computational domain. Concretely, it means
that the electromagnetic solutions of the two systems of
Fig. 1 are identical inside the inner PML boundaries.
Because of the presence of the PMLs, the new system is
now dissipative. It supports an enumerable set (not a con-
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FIG. 1 (color online). (a) PC waveguide considered in this
work and formed by removing a single row in a triangular lattice
of air holes in a semiconductor membrane (thickness h) with air
claddings. (b) Associated computational geometry obtained by
surrounding the actual waveguide with PMLs (in blue) in the
transverse translation-invariant directions. The dark purple part
helps visualizing the surfaces S1 and S2. The PML thickness is
not shown for the sake of clarity.
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tinuum) of quantized modes that vanish at the outer PML
boundaries and that can be numerically handled. Except for
the truly guided mode, the modes depend on the specific
implementation of the PMLs, they will be referred to as
quasinormal Bloch modes (QNBMs). We will show that it
is possible to define an orthogonality product for these
modes and that the new system allows for a full treatment
of the dipole-field coupling.

Potentially the forward-propagating QNBMs
encompass a finite set of truly guided modes—the wave-
guide is assumed to be monomode hereafter and this
mode will be denoted ��1� � �E�1�;H�1�� exp�jk1z�, with
Im�k1� � 0—and an enumerable set (m> 1) of leaky
modes ��m� � �E�m�;H�m�� exp�jkmz�, with Im�km�> 0.
The 6-component vectors �E�m�;H�m�� are z-periodic func-
tions of period a. Similarly, we denote by ���m� �
�E��m�;H��m�� exp��jkmz� the associated backward-
propagating modes. The total field ��r� radiated by a
Dirac dipole source J��r�r0� can be expanded in terms
of the complete set of outgoing QNBMs. For z > z0 and
z < z0, we respectively have
 

��r� �
X
m>0

c�m�E�m��r�;H�m��r�� exp�jkmz�; (1a)

��r� �
X
m>0

c�m�E��m��r�;H��m��r�� exp��jkmz�; (1b)

where c�m and c�m are the modal amplitude coefficients of
the forward and backward QNBMs, respectively. To cal-
culate these coefficients, we consider two solutions of
Maxwell’s equations for the same periodic-waveguide ge-
ometry, solution (1): �E1;H1� � ��r� is the field in the
presence of the Dirac source J��r�r0�, and solution (2):
�E2;H2�, a QNBM in the absence of any source. Referring
to the Lorentz reciprocity theorem [9], one obtains
�S�E2 	H1 � E1 	H2� 
 dS � �E2�r0� 
 J for any
closed surface S enclosing the source. We now apply the
theorem to the closed surface formed by two waveguide
cross sections, z � z1 and z � z2, and by the PML outer-
boundary surfaces S1 and S2; see Fig. 1(b). Assuming that
the surface-integral contribution is negligible at S1 and S2

(the electromagnetic fields fall off exponentially in the
PMLs), one obtains by taking the field ��r� of Eqs. (1a)
and (1b) as solution (1), and ���p� as solution (2),
 

c�p
ZZ

z�z2

�E��p��r� 	H�p��r� � E�p��r� 	H��p��r�� 
 zdS

� �J 
 E��p��r0� exp��jkpz0�: (2a)

Similarly, using ��p� as solution (2), we have
 

c�p
ZZ

z�z1

�E��p��r� 	H�p��r� � E�p��r� 	H��p��r�� 
 zdS

� �J 
 E�p��r0� exp�jkpz0�: (2b)

To derive Eqs. (2a) and (2b), one has additionally used the
orthogonality of QNBMs, which specifies that

RR
A�E

�q� 	

H�p� �E�p� 	H�q�� 
 zdS is null if q � �p, for any wave-
guide cross section A. Importantly, note that the integrals
over the cross section planes z � z1 and z � z2 in Eqs. (2a)
and (2b) run over the entire waveguide cross sections,
including the PML regions. Therefore the cp’s and the
orthogonality relation are defined for the analytical con-
tinuations of the fields. In addition and consistently with
the fact that the cp’s do not depend on the cross section, it is
shown that the integrals on the left-hand sides of Eqs. (2a)
and (2b) are equal. For the truly guided mode, ��1� �
���1�� so that Eqs. (2a) and (2b) further simplifies

 c�1 � �c
�
1 �
� � �a�E�1��r0� 
 J� exp�jk1z0�=�4vgEm�; (3)

with 2Em
R

cell "�r�jE
�1��r�j2dr and vg is the group velocity

of ��1�. In agreement with [8], the SE decay PM into ��1�

and ���1� reads as PM�r0� � ajE�1��r0� 
 Jj2=�8vgEm� and
scales as �vg��1 [5].

As shown by Eqs. (2a) and (2b), the solution solely relies
on the knowledge of the QNBMs. For calculating these
modes, we use a Fourier modal method with PMLs in the x
and y directions. The QNBMs are calculated as the eigen-
states of the unit-cell transfer matrix; see details in [10].
Then, the c�m and c�m coefficients are analytically calculated
and, by using Eqs. (1a) and (1b), the field distribution is
recovered everywhere. Thus the total SE rate is calculated
as the Poynting-vector flux over a closed surface that is
surrounding the source and that is fully enclosed inside the
inner PML boundaries. By subtracting the guided-mode
contribution PM, the SE into radiation modes is obtained.
We have performed various cross-checking tests by vary-
ing the PML thickness, the number of hole rows, and the
Fourier space resolution. We estimate that the relative error
on the computed data is �1%. Hereafter, we consider two
in-plane dipole components and we assume that they are
equally excited. For on-axis locations and because the z
dipoles do not couple to the guided Bloch mode for sym-
metry reasons, only the continuum of radiation modes is
excited with a SE rate denoted �z. For x dipoles, the SE
rate is driven by both radiation (�x) and guided modes
(PM). Assuming random dipole orientations, the coupling
factor � reads as � � PM=�PM � �x � �z�.

Figure 2 summarizes the main useful results predicted
for a single-row-missing PC waveguide in a semiconductor
(n � 3:55) membrane in air, for three on-axis (x0 � 0,
y0 � �h=2) dipole locations, z0 � 0, a=4, and a=2 [see
Fig. 3(a) for the definition of z0], and over the full-spectral
interval of monomode operation from a=� � 0:243 �m
(band-edge cutoff) to a=� � 0:263 �m (air-light line cut-
off). All plots are normalized to the SE in the bulk mate-
rial. The SE decay rate PM into the guided modes
[Fig. 2(b)] is essentially similar to that in the bulk material.
As expected [5,8], it diverges as 1=vg at the band edge
where� asymptotically tends toward 1, except for the z0 �
a=2 dipole location (dotted black curve) for which the
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dipole-field coupling is null for symmetry reasons.
Although the accompanied increase in the total SE rate is
interesting in itself, we rather aim at exploring situations
for which large �’s are achieved by a decrease of � alone
and not by a spectrally selective LDOS enhancement like
in microcavities. Relevant to this context are the small
values of the SE rates �x and �z into the radiation states;
see Fig. 2(c). �x is lower than 0.05 over the full frequency
range, while �z is unfortunately very small only at large
wavelengths, near the band-edge cutoff. Yet the � factor
shown in Fig. 2(d) remains greater than 75% over a 50-nm

spectral range, which already represents a much better
performance than that achieved in classical dielectric
z-invariant waveguides [11]. We have also performed cal-
culations for off-axis dipole locations; it turns out that the
SE rate into radiation modes remains rather low [�x and �z
are similar to the on-axis case of Fig. 2(c)]. The x-dipole
SE rate, PM, into the guided mode decreases since the
dipole-field coupling is weakened by transverse shifts or
misalignments [Eq. (3)], but this lowering is roughly com-
pensated by the existence of some z-dipole SE into this
same guided mode. Overall, it results that the � factor
remains above 75%, as shown by the thin solid curve in
Fig. 2(d) obtained for z0 � 0 and x0 � 100 nm.

Actually, the drop of � at small wavelengths in Fig. 2(d)
is due to the relatively high SE rate of the z dipole in
radiation modes, �z � 10�x. It is well known that the SE
of a dipole in the vicinity of a semiconductor-air interface
oscillates as a function of the dipole-interface distance. For
semiconductor membranes, the cavity effect due to two
interfaces results in a minimal radiation-mode excitation
for a membrane thickness equal to � �=2n [1], thus mo-
tivating the choice of a h � 0:75a membrane thickness for
the calculations and in earlier experimental works [3,4].
Applying the same idea to the x direction of the PC
waveguide, we are facing a much stronger interaction
because of the high reflectivity (jrj2 � 97%) at the PC
boundaries [12]. We believe that this band-gap guidance
is responsible for the lower �z values obtained with PC
waveguides in comparison to those obtained for air-
semiconductor wires, the latter suffering from weak reflec-
tions (jrj2 � 30%) at the interfaces in the two transversal
directions.

Intuitively, two parameters, denoted by s and L in
Fig. 3(a), allow one to monitor the amplitude and the
retardation of the light reflected at the PC mirror: a shift
s of the two inner first hole rows of the waveguide mainly
reinforces the amplitude of the reflected light [12], while
the defect width L controls the retardation effect. Although
such a classical picture applied at a subwavelength scale is
only approximate, it paves the way to control the vacuum-
field radiation-mode coupling. Indeed we have performed
calculations for the SE rates in the radiation modes and it
turns out that the lateral shift s can largely impact �z. In
Fig. 3(b), we show the trends observed by tuning s for L �
a

���
3
p

, similar results being obtained for other L values. As s
increases, �x remains low and �z is reduced. But the
downside is a decrease of the available wavelength range
of monomode operation, which moves from 60 nm for s �
0 nm to less than 20 nm for s � 60 nm. In Fig. 4(b) (solid
blue curve), we have plotted the spectral dependence of �
for s � 40 nm, a geometry offering a good compromise. �
remains higher than 88% over the 40-nm spectral range.

So far we have considered the � factor into two funda-
mental, counterpropagating modes. Yet photon emission
into a single mode is highly desirable for applications and
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FIG. 2 (color online). Dipole radiation into a PC waveguide
with a � 240 nm, h � 0:75a, and a hole radius of 0:29a.
(a) Dispersion diagram of the guided Bloch modes for s �
0 nm (solid blue curves) and for s � 40 nm (dashed black
curves). (b) Normalized SE decay rate PM into the fundamental
Bloch modes. (c) Normalized SE decay rates into the radiation
modes for the two in-plane dipole moment orientations.
(d) Associated � factors. The thin solid blue curve is obtained
for an off-axis dipole location (x0 � 100 nm and z0 � a=2). In
all plots, circles, squares, and stars are reference marks locating
the fundamental Bloch-mode group velocities equal to c=20,
c=10, and c=5, respectively. From (b) to (d), three on-axis dipole
locations, z0 � a=2 (solid blue line), a=4 (dash-dotted red line),
and 0 (dashed black line), are considered.
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�x and �z are shown on the spectral domains of monomode
operation for the PC waveguides, between the air-light line
cutoff and the band-edge cutoff �0. Circles, squares, and stars
as in Fig. 2.
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can be simply achieved by closing an extremity of the
waveguide by a semi-infinite Bragg mirror, as shown in
the inset of Fig. 4(a). The � factor of the semiclosed
geometry can be directly deduced from the previous results
provided that one neglects the feedback coupling between
the dipole and the radiation QNBMs excited by the dipole
and backreflected by the mirror. Within this approxima-
tion, the SE decay rate Pc into ��1� is simply given by

 Pc � jc�m�z0� � rc�m�z0� exp�j2k1z0�j
2; (4)

where r is the modal reflectivity coefficient of ���1� into
��1� (jrj2 � 98%) [12]. For a=� � 0:255 (vg � c=8), the
dependence of Pc with the dipole location z0 is shown in
Fig. 4(a) with the solid red curve. Pc exhibits a quasiperi-
odic modulation with the dipole-mirror distance, which
results from the interplay between the backscattered-
mode phase matching (preponderant periodicity 2�=k1)
and the dipole-Bloch-mode coupling coefficients c�m�z0�
and c�m�z0� (periodicity a). The model predictions (solid
red curve) well reproduce the numerical data (blue circles)
obtained with the theoretical formalism, the difference
vanishing as the impact of radiation QNBMs decreases
by tunnelling, i.e., as z0 increases. For efficient broadband
single mode emission, the dipole location z0 � 0:65a,
marked with a green arrow in Fig. 4(a), is highly valuable
since it offers constructive backscattering interferences of
��1� strengthened by a positive contribution of the radia-
tion QNBMs. Using the theoretical formalism, we have
calculated the � factor of the semiclosed geometry for this
dipole location. The results are shown in Fig. 4(b) with the
dotted red curve [13]. Quite remarkably, the � factor
exceeds 95% over a 40-nm bandwidth, a value comparable
with the inhomogeneous broadening of QD array emission
lines.

In conclusion, we have shown that a very low coupling
into the radiation modes is achievable in PC waveguides
and that it allows a highly efficient funneling of light into a
single mode over a large spectral range. This broadband
operation releases the atom-cavity spectral matching re-

quired with resonators [14] and thus increases device yield.
Moreover, by closing the engineered waveguide on both
sides, very-high single-photon extraction efficiencies can
be achieved without relying on a strong Purcell effect and
thus operation at cryogenic temperatures can be consid-
ered. Furthermore, small �’s are important since large �
enhancements driven by Purcell factor alone are always
limited by the spectral width of the QD transition.
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