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We investigate the spatial structure of the two-neutron wave function in the Borromean nucleus 11Li,
using a three-body model of 9Li� n� n, which includes many-body correlations stemming from the
Pauli principle. The behavior of the neutron pair at different densities is simulated by calculating the two-
neutron wave function at several distances between the core nucleus 9Li and the center of mass of the two
neutrons. With this representation, a strong concentration of the neutron pair on the nuclear surface is for
the first time quantitatively established for neutron-rich nuclei. That is, the neutron pair wave function in
11Li has an oscillatory behavior at normal density, while it becomes a well-localized single peak in the
dilute density region around the nuclear surface. We point out that these features qualitatively correspond
to the BCS- and BEC-like structures of the pair wave function found in infinite nuclear matter.
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Pairing correlations play a crucial role in many fermion
systems, such as liquid 3He, atomic nuclei, and ultracold
atomic gases [1–3]. When the attractive interaction be-
tween two fermions is weak, the pairing correlation can
be understood in terms of the well-known Bardeen-
Cooper-Schrieffer (BCS) mechanism [1], showing a strong
correlation in the momentum space. If the interaction is
sufficiently strong, on the other hand, one expects that two
fermions form a bosonic bound state with condensation in
the ground state of a many-body system [4–8]. The tran-
sition from the BCS-type pairing correlations to the Bose-
Einstein condensation (BEC) takes place continuously as a
function of the strength of the pairing interaction. This
feature is often referred to as the BCS-BEC crossover.

Recently, exploiting the Feshbach resonance with which
the strength of effective interaction can be arbitrarily var-
ied, the BCS-BEC crossover has been experimentally real-
ized for a gas of ultracold alkali atoms [9–11]. This has
stimulated a lot of subsequent work, not only in condensed
matter and atomic physics [8] but also in nuclear and
hadron physics [12,13] (see also Ref. [14]).

Neutron-rich nuclei may manifest both BCS- and BEC-
like features. These nuclei are characterized by a dilute
neutron density around the nuclear surface, and one can
investigate the pairing correlation at several densities [15],
ranging from the normal density in the center of the
nucleus to a dilute density at the surface. In this connec-
tion, it is worthwhile to mention that Matsuo recently
investigated the spatial structure of neutron Cooper pairs
in low-density nuclear and neutron matters and found the
BCS-BEC crossover behavior in the pair wave function,
although the BEC limit is not reached because two neu-
trons are not bound in free space but only form a low-lying
virtual state (see below) [12]. In Ref. [14], proton-neutron

(T � 0) Cooper pairs were also studied in the same con-
text. The strong density dependence of the nucleon-
nucleon pseudopotential, as well as the Pauli principle,
are responsible for the crossover phenomenon.

In this Letter, we investigate the implication of the BCS-
BEC crossover in finite neutron-rich nuclei. To this end, we
particularly study the ground state wave function of a two-
neutron halo nucleus 11Li. This nucleus is known to be well
described as a three-body system consisting of two valence
neutrons and the core nucleus 9Li [16–21]. Since both the
n-n and n-9Li two-body subsystems are not bound, the 11Li
nucleus is bound only as a three-body system. Such nuclei
are referred to as Borromean nuclei and have attracted a lot
of attention [22,23]. A strong dineutron correlation as a
consequence of the pairing interaction between the valence
neutrons has been pointed out in 11Li [17,19], which has
recently been confirmed experimentally in the low-lying
dipole strength distribution [24]. This dineutron correlation
has a responsibility for the BEC-like behavior in infinite
nuclear matter, and thus, despite the fact that there is only
one neutron pair, 11Li provides optimum circumstances to
investigate BCS- and BEC-like features in finite nuclei.

In order to study the pair wave function in 11Li, we solve
the following three-body Hamiltonian [18,19]:

 H � ĥnC�1� � ĥnC�2� � Vnn �
p1 � p2

Acm
; (1)

wherem and Ac are the nucleon mass and the mass number
of the inert core nucleus, respectively. ĥnC is the single-
particle Hamiltonian for a valence neutron interacting with
the core. We use a Woods-Saxon potential with a spin-orbit
force for the interaction in ĥnC. The diagonal component of
the recoil kinetic energy of the core nucleus is included in
ĥnC, whereas the off-diagonal part is taken into account in
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the last term in the Hamiltonian (1). The interaction be-
tween the valence neutrons Vnn is taken as a delta interac-
tion whose strength depends on the density of the core
nucleus. This kind of pseudopotential has been standard for
nuclear pairing; see, e.g., Refs. [17,18]. Assuming that the
core density is described by a Fermi function, the pairing
interaction reads

 Vnn�r; r� � ��r1 � r2�

�
v0 �

v�
1� exp��R� R��=a��

�
;

(2)

where R � j�r1 � r2�=2j. The density-dependent term is
repulsive, and the strength of the interaction becomes
weaker for increasing density. We use the same value for
the parameters as in Refs. [18,19], in which R� �
2:935 fm in the density-dependent term.

The two-particle wave function ��r1; r2�, where the
coordinate of a valence neutron from the core nucleus is
denoted by ri, is obtained by diagonalizing the three-body
Hamiltonian (1) within a large model space which is con-
sistent with the nn interaction Vnn. To this end, we expand
the wave function ��r1; r2� with the eigenfunctions of the
single-particle Hamiltonian ĥnC. In the expansion, we ex-
plicitly exclude those states which are occupied by the core
nucleons, as in the original Cooper problem [1]. The
ground state wave function is obtained as the state with
the total angular momentum J � 0. We transform it to the
relative and center of mass (c.m.) coordinates for the
valence neutrons r � r1 � r2 and R � �r1 � r2�=2 (see
Fig. 1) [25–27]. To this end, we use the method of
Bayman and Kallio [28]. That is, we first decompose the
wave function into the total spin S � 0 and S � 1 compo-
nents. The coordinate transformation is then performed for
the S � 0 component, which is relevant to the pairing
correlation:

 �S�0�r1; r2� �
X
L

fL�r; R��YL�r̂�YL�R̂���00�j�S�0i; (3)

where j�S�0i is the spin wave function.

We apply this procedure to study the ground state wave
function of the 11Li nucleus. We first discuss the probabil-
ity of each L component in the wave function. Defining the
probability as

 PL 	
Z 1

0
r2dr

Z 1
0
R2dRjfL�r; R�j

2; (4)

we find PL � 0:578 for L � 0, 0.020 for L � 2, and
0.0045 for L � 4. The S � 0 component of wave function
is thus largely dominated by the L � 0 configuration [16].
The sum of the probabilities for L � 0, 2, and 4 compo-
nents is 0.6025, which is close to the S � 0 probability in
the total wave function 0.606 [18,19].

Figure 1 shows the square of the two-particle wave
function for the L � 0 component. It is weighted with a
factor of r2R2. One can clearly recognize the two-peaked
structure in the plot, one peak at �r; R� � �2:2; 3:4� fm and
the other at �r; R� � �4:4; 1:8� fm. These peaks correspond
to the dineutron and the cigarlike configurations discussed
in Refs. [17,19,22], respectively. Notice that the first peak
is located at a small relative distance between the neutrons
and that the corresponding configuration is rather compact
in the coordinate space.

The L � 0 wave functions of 11Li for different values of
R are plotted in Fig. 2 (solid line) as a function of r. The
three-body wave function has not been presented in this
way as far as we know, although the coordinate system
�r;R� has been employed in several previous calculations
[16,22]. For comparison, those of 16C are also shown by the
dashed lines with arbitrary scale. Since we consider the
density-dependent contact interaction (2), this is effec-
tively equivalent to probing the wave function at different
densities. Let us first discuss the wave function of 11Li. At
R � 0:5 fm, where the density is close to the normal

FIG. 1 (color online). A two-dimensional plot for the ground
state two-particle wave function r2R2jfL�0�r; R�j

2, for 11Li. It is
plotted as a function of the relative distance between two
neutrons r and the distance between the center of mass of the
two neutrons and the core nucleus R, as denoted in the inset.
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FIG. 2. The ground state two-particle wave functions
r2R2jfL�0�r; R�j2 as a function of the relative distance between
the neutrons r at several distances R from the core. The solid
lines correspond to the two-particle wave functions of 11Li,
while the dashed lines denote those of 16C. Notice the different
scales on the ordinate in the various panels.
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density �0, the two-particle wave function is spatially
extended and oscillates inside the nuclear interior. This
oscillatory behavior is typical for a Cooper pair wave
function in the BCS approximation and has, in fact, been
found in nuclear and neutron matters at normal density �0

[see Fig. 4(f) in Ref. [12] as well as Fig. 4 in Ref. [14]]. As
in the infinite matter calculation [12], the two-particle
wave function has a significant amplitude outside the first
node at 2.4 fm. This is again a typical behavior of the BCS
pair wave function. Notice that the core nucleus was
assumed to be a point particle in Ref. [16], and the oscil-
lation of the pair wave function due to the Pauli principle is
not seen there. AsR increases, the density � decreases. The
two-particle wave function then gradually deviates from
the BCS-like behavior. At R � 3 fm, the oscillatory be-
havior almost disappears, and the wave function is largely
concentrated inside the first node at r
 4:5 fm. The wave
function is compact in shape, indicating the strong dineu-
tron correlation, typical for BEC when many such pairs are
present. At R larger than 3 fm, the squared wave function
has essentially only one node, and the width of the peak
gradually increases as a function of R. This behavior is
qualitatively similar to a local density approximation pic-
ture of the pair wave function in the infinite matter [12].

The present results also provide a unified picture of the
dineutron and the cigarlike configurations in Borromean
nuclei. We have seen in Fig. 1 that, for 11Li, the former
configuration corresponds to the peak around r
 2:2 fm
while the latter to the peak around r
 4:4 fm. These
correspond to the first and the second peaks of the solid
lines in Fig. 2, respectively (see a typical case for R �
2:0 fm). The transition from the BCS-like behavior of the
wave function to the BEC-like dineutron correlation shown
in Fig. 2 thus suggests that the dineutron and the cigarlike
configurations are not independent of each other but rather
a manifestation of a single Cooper pair wave function
probed at various densities.

We have confirmed, using the same three-body model,
that this scenario also holds for another Borromean nucleus
6He as well as for the non-Borromean neutron-rich nuclei
16C and 24O. See the dashed line in Fig. 2 for 16C. The
similarity with 11Li is striking. Namely, the oscillatory
behavior is seen at small R � 3:0 fm, while a single com-
pact peak appears at R
 4:0 fm. The surface condensation
of the Cooper pair in several neutron-rich nuclei has been
discussed also in Refs. [15,20], although these references
use a coordinate system which does not remove the center
of mass motion of two neutrons and the surface condensa-
tion is less evident. We should mention that a similar, but
less pronounced, space correlation has already been men-
tioned earlier in Refs. [25,26] for stable heavy nuclei. All
of this indicates that the positioning of strongly coupled
Cooper pairs with maximum probability in the nuclear
surface is a quite common and general feature, which is
enhanced significantly in the neutron-rich loosely bound
nuclei.

The transition from the BCS-type pairing to the BEC-
type dineutron correlation can also clearly be seen in the
root mean square (rms) distance of the two neutrons. For a
given value of R, we define the rms distance as

 rrms�R� 	
����������
hr2
nni

q
�R� �

��������������������������������������R
1
0 r

4drjf0�r; R�j2R
1
0 r

2drjf0�r; R�j2

vuut : (5)

We plot this quantity in Fig. 3(a) as a function of R. In
order to compare it with the rms distance in nuclear
matter, we relate the c.m. distance R with the density �
using the same functional form ��R�=�0 � f1� exp��R�
R��=a��g

�1, as used in the nn interaction in Eq. (2).
Figure 3(b) shows the rms distance thus obtained as a
function of density �. The rms distance shows a distinct
minimum at �
 0:4�0 (R
 3:2 fm) in 11Li and �

0:2�0 (R
 4:2 fm) in 16C. This indicates that the strong
dineutron correlations grow in the two nuclei around these
densities. Notice that the probability to find the two-
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FIG. 3. The root mean square distance rrms for the neutron pair
defined by Eq. (5). It is plotted as a function of (a) the distance R
and (b) the density �=�0 of the core nucleus, where �0 is the
normal density of infinite nuclear matter. The solid and dashed
lines are for 11Li and 16C, respectively.
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neutron pair is maximal around this region (see Fig. 1). The
behavior of rms distance as a function of density � agrees
qualitatively well with that in infinite matter (see Fig. 3 in
Ref. [12]), although the absolute value of the rms distance
is much smaller in finite nuclei, since they are bound
systems. A size-shrinking effect has been found also for
a proton-neutron pair in infinite nuclear matter [29] as well
as in an old calculation for the 18O nucleus [27].

Finally, let us discuss how the dineutron wave function
in 11Li is modified when approaching the 9Li core from an
infinite distance. It is known that a two-nucleon system in
vacuum in the 1S; T � 1 channel (L � S � 0) has a virtual
state around zero energy. In regularizing the rms distance
using the method of Ref. [30], it is obtained with the
realistic Nijmegen potential [31] that the virtual state has
an extension of around 12 fm. We therefore realize that in
11Li, in spite of being a halo nucleus, the nn singlet pair
shows a dramatic change from its asymptotic behavior.
Approaching the core nucleus 9Li, it shrinks down to an
rms distance rrms of only 2.6 fm at a c.m. position of R �
3:2 fm. At the same time, it has gained a maximum of
binding. All of this happens because of the well-known
Cooper pairing phenomenon. Pushing the nn pair further to
the center, it feels the increasing density of the neutrons of
the core with which the nn pair needs to be orthogonal.
Therefore, approaching the center, the Cooper pair again
loses binding and thus increases in size. What is surprising
is that there exists such a well-pronounced radius in the
surface where the Cooper pair has minimum extension and
the highest probability of presence (see Figs. 1–3). This
seems a quite general feature common to many nuclei with
well-developed pairing correlations as shown in Fig. 2 (see
also Ref. [32]).

In summary, we studied the two-neutron wave function
in the Borromean nucleus 11Li by using a three-body
model with a density-dependent pairing force and dis-
cussed its relation to the Cooper pair wave function in
infinite matter. We explored the spatial distribution of the
two-neutron wave function as a function of the center of
mass distance R from the core nucleus, which allows an
optimal representation of the physics. We found that the
structure of the two-neutron wave function alters drasti-
cally as R is varied, in a qualitatively similar way to that for
the infinite matter. We also showed that the relative dis-
tance between the two neutrons scales consistently to that
in the infinite matter as a function of density. These fea-
tures show the same characteristics of coexistence of BCS-
and BEC-like behaviors found in infinite nuclear and neu-
tron matter.
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