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We describe a new method to treat low-energy scattering problems in few-nucleon systems, and we
apply it to the five-body case of neutron-alpha scattering. The method allows precise calculations of low-
lying resonances and their widths. We find that a good three-nucleon interaction is crucial to obtain an
accurate description of neutron-alpha scattering.
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There has been significant progress recently in under-
standing the ground and low-lying excited states of light
nuclei through microscopic calculations with realistic two-
and three-nucleon interactions [1–3]. These studies have
highlighted the importance of including a three-nucleon
interaction to obtain correct overall binding of the p-shell
nuclei [1], the ordering of states in 10;11;12B [3], and the
stability of neutron-rich nuclei [4]. Modern calculations
have been very successful in reproducing a large number of
the experimentally observed nuclear levels up to mass 12.

A wealth of additional experimental information is
available in the form of low-energy scattering and reaction
data. Very narrow low-energy resonances have been treated
in the above calculations as if they were bound states.
Nonresonant scattering and broad resonances have been
mostly neglected. The error introduced by the pseudo-
bound treatment of narrow resonances is not known quan-
titatively; no unambiguous energy can be obtained for
broad resonances, and no widths are predicted. Methods
to treat scattering and resonance states as such will form
the foundation for a quantitative, microscopic theory of
low-energy nuclear reactions on light nuclei. Such a theory
would be useful to astrophysics, because experimental
determinations of crucial reaction rates are often difficult
or impossible.

A few quantum Monte Carlo (QMC) calculations have
been made for multinucleon scattering with true scattering
boundary conditions [5–7]. In this Letter we review the
method previously used for scattering, present a signifi-
cantly improved method, and use it to study low-energy
neutron-alpha scattering as a five-body problem. We evalu-
ate the two low-lying p-wave resonances with J� � 3=2�

and 1=2�, respectively, as well as low-energy nonresonant
s-wave �1=2�� scattering.

In each case, we calculate the phase shift as a function of
energy for the Argonne v18 (AV18) two-nucleon potential
[8] alone, and with either the Urbana IX (UIX) model [9] or
Illinois-2 (IL2) model [4] three-nucleon potential added.
We find significant differences in the calculated phase
shifts: the AV18 and AV18� UIX models produce too

little splitting of the 3=2� and 1=2� states, while AV18�
IL2 reproduces their energies and widths very well. All
three models match the low-energy s-wave cross sections.
The results demonstrate that experimental phase shifts can
be reproduced using realistic interactions with simple
modifications to the computational method used for bound
states. They also suggest that scattering calculations could
provide sensitive constraints on models of the three-
nucleon interaction.

In general it is very difficult to treat quantum scattering
problems with more than a very few constituents. Often
there are many initial or final states, and it is not yet
possible to discretize the Schrödinger equation and solve
directly for the scattering states. Correct treatment of the
boundary conditions for more than two outgoing constitu-
ents is also complicated.

For low-energy scattering, though, there are often only a
few two-cluster channels open. For one open channel of
total angular momentum J and orbital angular momentum
L, the wave function at large separation r of clusters with
internal wave functions �c1 and �c2 will behave as

 � /
1

kr
f�c1�c2YLgJ�cos�JLFL�kr� � sin�JLGL�kr��;

(1)

where �JL is the phase shift, k �
�����������������
2�E=@2

p
, E is the

scattering energy in the c.m. frame, � is the reduced
mass, FL and GL are, respectively, regular and irregular
real solutions of the Schrödinger equation with zero nu-
clear potential, YL are spherical harmonics, and f� � �gJ
denotes angular momentum coupling.

Previous QMC calculations of scattering converted the
problem to an eigenvalue problem by imposing a boundary
condition ��r � R0� � 0 at a surface radius R0 beyond the
range of the nuclear interaction, and then solving for the
energy within this nodal surface [5,10]. Equation (1) then
gives tan�JL � �FL�kR0�=GL�kR0�. Finding E as a func-
tion of R0 is equivalent to determining �JL�E�.

The nodal boundary condition requires different R0 for
different scattering energies. Energies near threshold re-
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quire very large R0, which can cause numerical difficulties,
e.g., Monte Carlo errors that grow as the square root of the
sampled volume. It is preferable instead to impose a loga-
rithmic derivative � on the wave function along the direc-
tion n̂ normal to the r � R0 surface:

 n̂ � rr� � ��; at r � R0: (2)

Equation (1) then gives �JL from E, R0, and �. We can fix
R0 at the minimum necessary and vary � to produce
scattering states of varying E.

We compute nuclear energies by using two QMC meth-
ods as successive approximations. The variational
Monte Carlo (VMC) method uses a trial wave function
�T�J

�;T� with variational parameters that are adjusted to
minimize the energy expectation value; Monte Carlo tech-
niques are used to evaluate the integrals over particle
position. The method and the form of �T are described
in detail in Refs. [1,11]. VMC calculations of n-� scatter-
ing using a nodal �T were first made in the 1980s [6]. In
the present work, correlations inside �T (the �LS

p of
Ref. [11]) are constrained so that it goes to the form
Eq. (1) at large r and satisfies Eq. (2).

Green’s function Monte Carlo (GFMC) calculations take
�T and evolve it in imaginary time, �, to produce ���� �
exp���H � E0����T . For large �, ���! 1� / �0, the
lowest state with the specified quantum numbers. The
propagation time is divided into many small steps of length
��, for which the exponential can be accurately evaluated,
and ���� is computed by iterating the Green’s function,

 G�R0;R; ��� � hR0j exp���H� E0����jRi; (3)

acting on samples of �T . Here R � �r1; r2; . . . ; rA� is the
spatial configuration of the nucleons; although G is an
operator, we suppress its spin-isospin labels for simplicity.
The nuclear GFMC method is described in Ref. [2]. We
include in Eq. (3) all terms of H except those quadratic in
orbital angular momentum, which are treated perturba-
tively. GFMC calculations with the nodal condition at R0

have been performed for n-� scattering [7] and also for
some atomic and condensed-matter problems [12,13].

In this work, we restrict the GFMC simulation to cluster
separations less than R0 by rejecting Monte Carlo steps that
go outside the boundary. The wave function in the re-
stricted volume is the small-r part of a scattering wave
function that fills all space, with an energy specified im-
plicitly by the boundary condition. The contributions to
���� at the �n� 1�th �� step come from inside and out-
side the r < R0 region:

 �n�1�R0� �
Z
jrj<R0

dRc1dRc2drG�R0;R; ����n�R�

�
Z
jrej>R0

dRc1dRc2dreG�R0;R; ����n�R�:

(4)

Here R is written in terms of both internal cluster coor-
dinates Rc1 and Rc2, and the cluster-cluster separations r

and re, which, respectively, are contained inside, or extend
outside, of the boundary R0.

The contribution of the outer region is mapped to an
integral over the interior region by a change of variables,
r � �R0=re�2re with re � jrej, in the second term of
Eq. (4). A wave function sample at the point R0 is then
the sum of one contribution from the previous point R and
one from an ‘‘image point’’ at Re, located outside the r �
R0 boundary:
 

�n�1�R0� �
Z
jrj<R0

dRc1dRc2drG�R0;R; ���

	

�
�n�R� �

G�R0;Re; ���
G�R0;R; ���

�
re
r

�
3
�n�Re�

�
:

(5)

Because G�R0;R; ��� has short range, the �n�Re� can be
obtained by linear extrapolation,

 �n�Re� 
 �1� ��Re �R� � n̂��n�R�; (6)

or by fixing the energy and extrapolating with Eq. (1). The
GFMC simulation considers each partition of the nucleons
into clusters with separation r. If the resulting jr� rej<
1 fm, the image contribution is used; otherwise the short
range of G makes it insignificant.

This method has several advantages over the nodal
boundary condition. Fixing R0 at a constant small value
both improves the efficiency of Monte Carlo sampling and
in future work will allow GFMC calculations of correlated
energy differences between states of different �. Since the
path integrals differ only at the surface, energy differences
between states have smaller sampling errors than the indi-
vidual energies.

Neutron-alpha scattering provides a convenient test of
several important properties of low-energy nuclear scatter-
ing. There is no bound state in the A � 5 system, but the
3=2� channel has a sharp low-energy resonance. The 1=2�

state is broader and higher in energy, and the combination
of these two states provides a simple measure of spin-orbit
splitting. Since the alpha particle is so tightly bound,
simple single-channel scattering continues up to fairly
high energies.

The quantity most naturally given by a GFMC calcula-
tion is the total nuclear binding, and a precision of about
1% has been the goal of past calculations. However, the
quantity used to compute phase shifts is the energy relative
to threshold, so a precision of 100 keV in this quantity is
�0:3% of the total energy in the 5He problem. To attain
this, we must choose R0 carefully, construct a �T as close
as possible to the desired GFMC solution, and use a less
stringent GFMC path constraint.

First, the only a priori constraint on R0 is that it should
be ‘‘beyond the range’’ of the nuclear interaction. We find
that our GFMC result depends on R0 at the level of about
100 keV (out of a total of �� 28 MeV) in going from
R0 � 7 to 9 fm. We find no further change going from 9 to
10 fm; the highest attainable energy (corresponding to the
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state with a node at the surface) decreases as R0 increases,
so we choose R0 � 9 fm.

Second, the GFMC energy also depends somewhat on
the input �T . We find it important to adjust pair correla-
tions between particles in different clusters (between the n
and constituents of the � in this case) so that the factoriza-
tion in Eq. (1) is enforced at large cluster separation [14].
We also adjust a parameter in �T that corresponds to k
until it matches the final GFMC energy; this typically takes
one or two iterations of the VMC and GFMC calculations
to obtain a self-consistent result.

Finally, in all of our A > 4 GFMC calculations, we use a
path constraint [1] on the GFMC walk to mitigate the
Fermion sign problem; we compute energy samples only
after releasing the constraint for some number of steps to
avoid biasing the results. We find that stable results in our
scattering calculations require the use of 80 unconstrained
steps rather than the usual 20 to 40. However, the �� step
size is unchanged.

In Fig. 1 we present phase shifts for all channels, com-
puted with three different interaction models. In each case
the AV18 potential is used as the two-nucleon interaction;
in the second (third) case the UIX (IL2) three-nucleon
potential is added. We also show partial-wave total cross
sections for the AV18� IL2 case in Fig. 2. Each point in
these figures is equivalent in computer time to a single
bound-state calculation of comparable statistical error.
Because of the narrow resonance in the 3=2� channel, �

varies rapidly with E so that the highest-energy state we
can reach—the first with a node at R0 —lies lower than in
the other two channels. Future calculations extending to
energies beyond this maximum-energy state should be
analogous to previous calculations of multiple bound states
with the same quantum numbers [15].

In the figures, we compare our results with those from a
multichannel R-matrix analysis of the 5He system [16] that
characterizes the measured scattering data very well
(�2=d:o:f: is 1.6). Some of the resonance parameters
from that analysis are given in Refs. [17,18]. Because there
are more than 2600 data points in the analysis, the uncer-
tainties in the R-matrix phase shifts are likely to be much
smaller than the errors in the GFMC calculations.

We have made rational polynomial fits to tan�JL=k
2L�1,

converted them to rational polynomials for the S-matrix,
and used these to find the poles of S. These fits are shown
as dashed curves in the figures. For each of the two p-wave
states, we find just one pole that is stable as the degrees of
the polynomials are changed; we identify these as the
resonance poles. For 3=2� the poles are at 1:19–0:77i,
1:39–0:75i, and 0:83–0:35i MeV for AV18 alone, AV18�
UIX, and AV18� IL2, respectively, compared with
0:798–0:324i MeV from analysis of the data [18]. The
corresponding 1=2� values are 1:7–2:2i, 2:4–2:5i, and
2:3–2:6i MeV, compared with 2:07–2:79i MeV. The
1=2� fits yield no stable pole, in agreement with the lack
of a resonance in this channel and with the R-matrix
analysis. All pole locations have an error of not more
than 3 in the last decimal place.

It is well known that realistic two-nucleon interactions
alone provide insufficient spin-orbit splitting in light nuclei
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FIG. 1 (color online). Phase shifts for n-� scattering. Filled
symbols (with statistical errors smaller than the symbols) are
GFMC results; dashed curves are fits described in the text; and
solid curves are from an R-matrix fit to data [16].

0 1 2 3 4 5
0

1

2

3

4

5

6

7

Ec.m. (MeV)

σ JL
 (

b)

1
2

+

1
2

-

3
2

-

R Matrix

Pole location

FIG. 2 (color online). Partial-wave cross sections from the
AV18� IL2 Hamiltonian compared to R-matrix analysis.
Stars show the pole energies in 3=2� scattering for the
R-matrix fit and for AV18� IL2, with the bars indicating the
imaginary part.
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[19,20]. The figures and pole positions above confirm this:
the spin-orbit splitting with AV18 is less than half of what
is needed to explain the data. The UIX three-nucleon
potential includes a two-pion-exchange term and a phe-
nomenological short-range repulsion, fitted simultaneously
to the 3H binding energy and the saturation density of
nuclear matter. Adding UIX to AV18 increases the spin-
orbit splitting, but not enough to match the data.

The IL2 potential includes the terms in the UIX model,
plus a three-pion-ring exchange term and an additional
two-pion-range term. The strengths of all four terms
were adjusted to fit 17 energy levels in nuclei up to A �
8 [4]. Adding IL2 to AV18 induces even greater spin-orbit
splitting in the fitted nuclei; the figures and pole positions
show that the experimental 5He splitting is almost exactly
reproduced by AV18� IL2. The widths of the resonances
are also well reproduced by AV18� IL2.

All three potentials produced essentially identical results
for the 1=2� case, in good agreement with data. The
s-wave scattering is dominated by a node in the n-�
correlation at a position that roughly fixes the zero-energy
scattering length, and the wave functions for all potentials
contain similar structure. All three are consistent with a
scattering length of 2.4 fm, compared with an experimental
scattering length of 2.46 fm [18].

We note that the energies obtained here for the resonant
pole positions agree moderately well with those obtained
by treating them as pseudobound states [4]: for the 3=2�

state we formerly had 1.6, 1.4, and 0.7 MeV for the AV18,
AV18� UIX, and AV18� IL2, respectively, and 1=2�

values of 2.2, 2.5, and 2.3 MeV. However, we pointed out
in Ref. [4] that there was a certain ambiguity in determin-
ing the energies of broad states because they fell slowly but
steadily with imaginary time. Also, no resonance widths
could be computed using pseudobound states.

In summary, we have introduced a new QMC technique
to calculate low-energy scattering and applied it to
neutron-alpha scattering. Models of the three-nucleon in-
teraction that have been successful in describing bound
levels of light nuclei also provide good descriptions of
these scattering states. The AV18� IL2 Hamiltonian gives
a particularly good representation. The sensitivity of the
results in Fig. 1 to the Hamiltonian suggests that scattering
calculations can provide important additional constraints
on the three-nucleon interaction.

Many extensions and applications of the computational
method presented here are possible. Because these calcu-
lations are done in coordinate space, including Coulomb
interactions between the clusters will pose no problems;
the FL and GL of Eq. (1) are then simply Coulomb, rather
than Bessel, functions. Extensions to nucleus-nucleus
(rather than nucleon-nucleus) scattering should also be
feasible. Besides pure scattering problems and the use of

scattering wave functions to compute electroweak cross
sections [21] and hadronic parity violation, the scattering
method should be applicable to cases with more than one
open two-cluster channel. For Nch such channels, a set of
Nch linearly independent solutions of the Schrödinger
equation at the same energy determines the S matrix. The
solutions could be obtained either by varying the boundary
conditions at the surface, or by calculating the derivative of
the energy with respect to changes in the logarithmic
derivatives.

We gratefully acknowledge valuable discussions with
V. R. Pandharipande. Calculations were performed on the
parallel computers of the Laboratory Computing Resource
Center, Argonne National Laboratory. The work of
K. M. N., S. C. P., and R. B. W. is supported by the U. S.
Department of Energy, Office of Nuclear Physics, under
Contract No. DE-AC02-06CH11357. The work of J. C. and
G. M. H. is supported by the U. S. Department of Energy
under Contract No. DE-AC52-06NA25396.

[1] R. B. Wiringa et al., Phys. Rev. C 62, 014001 (2000).
[2] S. C. Pieper, K. Varga, and R. B. Wiringa, Phys. Rev. C 66,

044310 (2002).
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