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We present an experimental study of the statistics of surface gravity wave turbulence in a flume of a
horizontal size 12 X 6 m. For a wide range of amplitudes the wave energy spectrum was found to scale as
E, ~ o™ in a frequency range of up to one decade. However, v appears to be nonuniversal: it depends on
the wave intensity and ranges from about 6 to 4. We discuss our results in the context of existing theories
and argue that at low wave amplitudes the wave statistics is affected by the flume finite size, and at high

amplitudes the wave breaking effect dominates.
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Energy spectra of gravity surface waves and their proba-
bility density functions (PDF) contain important informa-
tion about nonlinear mechanisms of the wave interaction.
There are two most celebrated theories about the mecha-
nisms that determine the shape of the energy spectra in the
inertial (universal) interval of scales. The first theory was
suggested by Phillips (PH) [1] who argued that sharp wave
crests of breaking waves play the dominant role in the
short-wave asymptotic of the spectrum, and this approach
has been followed by many researchers (see, e.g., [2]). The
second theory, by Zakharov and Filonenko (ZF) [3], con-
siders the wave energy scaling in the inertial range as the
result of four-wave resonant interactions of random weakly
nonlinear waves. Importance of short-wave asymptotic for
oceanographic and climate applications stimulated a long-
term discussion and motivated further research. Although
significant progress has been made recently both in nu-
merical and field experiments [4—9], an unresolved issue
still remains which of the theories, and under what con-
ditions, could be applicable to the random waves generated
in laboratory wave tanks. For example the experiments
[8,10] used wind-wave forcing, which is spread over the
entire frequency range. Thus, there was no well-defined
inertial range and no statistical isotropy due to high tank
aspect ratio (typical for wind-wave tunnels); both condi-
tions are used in deriving ZF spectrum. In order to achieve
statistical isotropy and to obtain a wide inertial range of
scales, one should use flumes with the horizontal aspect
ratios closer to one and with a forcing localized at low
frequencies. Here considerable progress was made for
smaller tanks, which are relevant to the studies of capillary
[11,12] and gravity-capillary waves [13]. As far as we
know, no attempts were made to study nonlinear evolution
of random gravity waves in large flumes with close to 1
aspect ratio. Here we report the results of this kind of
experiment. To introduce reference points for our interpre-
tations, we start with a summary of existing theoretical
predictions.
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Consider the wave energy spectrum
E,—g f e (n(x, m(x, 1 + 1)) dr,

where 7(x, 1) is the surface elevation field in the horizontal
plane and the angle brackets mean the ensemble averaging.
Most of the theories predict a power-law scaling

E, = €0 (1

where € is the energy dissipation rate and the exponents v
and « depend on a particular theory.

Weak turbulence theory (WTT) considers weakly non-
linear random-phase waves in an infinite box limit. For the
wave spectrum, these assumptions lead to the Hasselmann
equation [14]. Zakharov-Filonenko (ZF) spectrum E, «
g%€'Pw™* is an exact solution of the Hasselmann equation
which describes a steady state with energy cascading
through an inertial range from large scales where it is
produced to the small scales where it is dissipated. It is
important that in deriving WTT the limit of an infinite box
is taken before the limit of small nonlinearity. This means
that in any large but finite box, the wave intensity should be
strong enough so that the nonlinear resonance broadening
is much greater than the spacing of the k grid. As estimated
in [15], this implies a condition on the minimal angle of the
surface elevation

y > 1/(kL)"/4, 2)

where L is the size of the basin. This is a very severe
restriction meaning, e.g., that for a ten-kilometer wide gulf
and meter-long waves one should have y > 0.1. On the
other hand, even for very small amplitudes some reso-
nances survive [6,7,16], and it is possible that they can
support the energy cascade through scales even when
condition (2) is not satisfied.

PH spectrum is derived by assuming that g and w (and
not €) are the only relevant dimensional physical quanti-
ties, which gives [1]
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[i.e., @ =0 in (1)]. PH spectrum is associated with the
sharp crested waves, so that the short-wave Fourier asymp-
totics are dominated by discontinuous slopes. Assuming
first that discontinuity is happening at an isolated point, we
get for the one-dimensional energy spectrum Ej « k3.
Second, assuming that the transition from the k space to
the w space should be done according to the linear wave
relation w = \/gk, we arrive at PH spectrum (3). Recently
Kuznetsov [17] questioned both of these assumptions and
argued that (i) the slope breaks on one-dimensional lines
(ridges) rather than zero-dimensional points (peaks), and
(i1) the wave crest is propagating with a preserved shape;
i.e., w « k should be used instead of w = +/gk. This gives
E, « w4, ie. formally the same scaling as ZF, even
though the physics behind it is different. Finally, it was
proposed in [18] that wave crest ridges may have a non-
integer fractal dimension in the range 0 < D < 2. For w
k, we have E,, ~ g! TP e2=D)/3 437D,

Discrete WTT [15] appeals to an observation that con-
dition (2) is often violated for weak waves in finite basins,
so that the number of exact and approximate four-wave
resonances will be drastically depleted [15,19,20]. This
arrests the energy cascade and, therefore, leads to energy
accumulation near the forcing interval of scales. The ac-
cumulation will proceed until the intensity is strong
enough for the nonlinear broadening to become compa-
rable to the k-grid spacing, i.e., when the condition (2) will
become marginally satisfied. At this point, the four-wave
resonances will get engaged and the spectrum ‘“‘sandpile”
will tip over towards the higher wave numbers. This pro-
cess will proceed until the whole k space will be filled by
the spectrum having a critical slope determined by the
condition that the resonance broadening is of the order of
the k-grid spacing for all modes in the inertial range. This
gives E,, ~ g/2L™"2»~° (hence @ = 0 in this case).

PDF of wave crest heights in homogeneous isotropic
wave fields with random independent phases would have a
Gaussian shape. For stronger nonlinearities, PDF for the
wave crests was predicted by Tayfun [21] based on a model
where the wave field is made of independent weakly non-
linear Stokes waves whose first harmonics are Gaussian.
Tayfun distribution was found to be in a good agreement
with numerical simulations with wide-angle quasi-
isotropic wave fields [22] and to a much lesser extent in
narrow-angle distributions [23]. Additional important in-
formation is contained in PDF of Fourier amplitudes.
Based on a generalized WTT, Choi et al. [16] obtained
solutions for such a PDF which has an enhanced probabil-
ity of strong waves with respect to Gaussian fields.

The experiments were conducted in a rectangular tank
with dimensions 12 X 6 X 1.5 m filled with water up to the
depth of 0.9 m. The wave maker consists of 8 piston-type
paddles covering the full span of a short side of the tank.
The oscillation amplitude, frequency, and phase can be set

for each paddle independently allowing control of the
directional distribution of the generated waves. In the
experiments described here, we used different excitations,
the geometry of the flume, and the water depth. In most
cases the excitation was a superposition of two waves with
frequencies 0.973 and 1.14 Hz with one wave directed
along the normal to the wave maker and the other at the
angle of 7° to it. In some other cases we used monochro-
matic excitation at 2 Hz, or broadband excitations in the
range from 0.8 to 1.2 Hz (with wave vectors distributed
over a 90° sector). Some measurements were done in a
perfectly rectangular flume and some with the back wall
tilted at 20°. Comparing the data related to different exci-
tation conditions we did not find any quantitative differ-
ence in the inertial interval of spectra. No changes in the
inertial interval of spectra were found even when the depth
of water was decreased to 0.45 m.

The surface elevation 7(r) was measured by capacitance
gauges simultaneously at two points in the middle part of
the tank. The minimum signal acquisition time was 2000 s.
The degree of nonlinearity can be characterized by the
mean slope at the energy containing scale, y = k,A,
where k,, is the wave number corresponding to the maxi-
mum in the energy spectrum and A is the rms of 7(z). In
most experiments k,, = 4.0 m~!, which corresponds to the
wavelength A = 1.6 m. Our experiments covered the range
from weak waves with mostly smooth surface and occa-
sional seldom wave breaking at y = 0.052 to stronger
waves characterized by a choppy surface with the numer-
ous wave breaking events at y = 0.21.

To calculate wave power spectra we used the Welch
algorithm with averaging over 1000 spectral estimates.
The typical spectra are shown in Fig. 1. It shows much
steeper slopes v for the weak waves than for the strong
ones. On the low amplitude end, we present only data
where the excitation amplitudes are strong enough for the
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FIG. 1. Typical results for the energy spectra. A: an experi-

ment with low wave intensity, y = 0.09; O: an experiment with
high wave intensity, y = 0.25.
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scaling to be well defined and not obstructed much by the
harmonics of the forcing frequency. On the high amplitude
side, we are restricted by intense splashing. For the experi-
ments with the minimal intensity, we get v = 6, which
agrees with the discrete WTT [15]. Thus, we confirm that
the k-space discreteness is important at low wave ampli-
tudes. In this case the condition (2) is not satisfied, y =
0.1 <1/(k,L)"/* = 0.4. A factor of 4 deficiency here
indicates that many of the four-wave resonances are
“switched off” and most of energy is carried from low
to high wave numbers by a small number of active wave
number quartets. This causes an extra anisotropy and in-
homogeneity of wave turbulence seen in our experiment
for weak waves.

Figure 2 shows the spectra slopes obtained in the experi-
ments with different wave intensities and different excita-
tion conditions. The x axis represents a combination
J=FE f/ f~7, which is a good measure of the wave field
intensity because, according to (1), it is expected to be
frequency independent in the scaling range E/f ™" o« &
(here f = 27w and E; = E,/2m). At large wave field
intensities, the scaling range reaches one decade in w in
width, which is significantly greater than the scaling ranges
previously observed in the numerics and in the field ob-
servations. There is a range of intensities where PH slope
v = 5 is observed, and we note that wave breaking events
were common for such intensities. At higher intensities,
the slope close to ¥ = 4 is observed as it was predicted by
both ZF and Kuznetsov theories [3,17]. However, the water
surface was visibly very choppy with numerous wave-
breaking and high values of the surface slope y > 0.15,
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FIG. 2. Plot of the spectral slopes vs the wave intensity J =
E;/f~" measured within the inertial interval. Here, 7y varies in
the range from 0.08 to 0.25. Inset: Dependence of the spectral
intensity J on the energy dissipation rate. E; is measured in
cm?s, f is in Hz. Solid and open circles correspond to the signals
measured simultaneously in two different points separated by a
distance of 0.4 m.

thus invalidating the weak nonlinearity assumption of ZF
theory [3]. Kuznetsov theory [17] is more likely to be
relevant to these conditions. We have not reached a plateau
in the vicinity of v = 4: v gradually decreases reaching
v = 4.1 for the maximum intensity y = 0.25. The gradual
change of v could be explained by changing the fractal
dimension of the wave crest ridges, from D = 2 “surface
filling” lines giving » = 5 at lower amplitudes to a set of
ID lines giving v = 4 at larger amplitudes (Phillips-
Kuznetsov scenario).

The inset in Fig. 2 shows the dependence of the wave
intensity J = E;/f~" on the energy dissipation rate €. The
value of € was found independently from the decay rate of
the wave energy decay measured immediately after switch-
ing off the wave maker via fitting the dependence of energy
on time by an exponential function. For different wave
intensities the decay rates were constant within a time
interval of at least 500 excitation wave periods. Despite a
significant scattering of data points (this is mainly because
of errors in € due to the limited length of the fit interval and
the chaotic nature of signals), one can see two different
regimes. At higher dissipation rates, J is an increasing
function of e. For comparison we show the slope « =%
corresponding to the WTT prediction. At low excitations
(up to the values corresponding to v ~ 5), intensity J is
nearly constant independent of e, which agrees with pre-
dictions of a = 0 by both the discrete WTT (for weaker
waves) and by PH spectrum (for stronger waves). In this
regime, the wave intensity J saturates at an e-independent
level and the excesses of energy are released downscale via
sandpile collapses, the later being stronger or/and more
frequent for larger values of e.

Figure 3 shows the PDF of the wave crests in a case with
strong wave intensity. There is a good qualitative agree-
ment of this PDF with Tayfun distribution except for rather
irregular deviations near the PDF maximum. Figure 4
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FIG. 3. PDF of the wave crests for high wave intensity, y =
0.25.
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FIG. 4. PDF of the spectral intensity bandpass filtered with
frequency window Af = *1 Hz centered at f = 6 Hz, y =
0.16. The inset shows the same plot in log-log coordinates.

shows a log-lin plot of the PDF of the spectral intensity /
obtained as the square of the bandpass filtered signal with a
pass window A f around a particular frequency f (Af <
f). The straight line on the plot shows Rayleigh distribu-
tion. The inset shows the same PDF in log-log representa-
tion. In the case of weak waves (not shown here) the PDF
follows closely Rayleigh shape up to I ~ 6 I,,. This is
natural because Rayleigh distribution of intensities corre-
sponds to Gaussian wave fields, which are expected to
occur when the waves are weakly nonlinear. However, in
the case of stronger waves the PDF deviates from Rayleigh
distribution in the tail. A power law I3 provides a good fit
for the range 2/, <I <10[,,, (a straight line in the
inset), which indicates a very strong intermittency. This
picture is similar to the one observed in numerical simu-
lations [6,16].

Our main conclusion is that the slope of the wave
spectrum is not universal: it takes high values, about 6,
for weak wave fields and gradually decreases to about 4
when the wave field intensity increases and the water
surface becomes very choppy with a lot of wave breaking.
At low wave amplitudes our results agree with the predic-
tion of [15] for the critical slope 6, which indicates that the
finite size effects of the flume are important at these
amplitudes and the four-wave resonances are greatly de-
pleted. The gradual decrease of the spectral slope at larger
amplitudes is possibly due to the sharp wave crests whose
fractal dimension decreases with increasing wave inten-
sity—from D ~ 2 for lower intensities to D =1 for
Kuznetsov spectrum. At this point dependence of D on

the wave intensity is speculative, and a further study of the
wave breaking morphology is needed. The important fea-
ture of our experiments was that the weak turbulence
regime was unlikely to have ever been achieved: with
increasing wave intensity the nonlinearity becomes strong
before the system looses sensitivity to the k-space discrete-
ness. PDFs of the wave crests were found to agree well
with Tayfun distribution except for the region of small
amplitudes. For PDFs of Fourier modes, we observed an
enhanced (with respect to Gaussian) probability of strong
wave amplitudes.
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