Leading Pollicott-Ruelle Resonances and Transport in Area-Preserving Maps

Roberto Venegerole[s*](#page-3-0)

Instituto de Fı´sica, Universidade de Sa˜o Paulo, C.P. 66318, 05315-970 Sa˜o Paulo, S.P., Brazil (Received 23 August 2006; published 5 July 2007)

The leading Pollicott-Ruelle resonance is calculated analytically for a general class of two-dimensional area-preserving maps. Its wave number dependence determines the normal transport coefficients. In particular, a general exact formula for the diffusion coefficient *D* is derived without any high stochasticity approximation, and a new effect emerges: The angular evolution can induce fast or slow modes of diffusion even in the high stochasticity regime. The behavior of *D* is examined for three particular cases: (i) the standard map, (ii) a sawtooth map, and (iii) a Harper map as an example of a map with a nonlinear rotation number. Numerical simulations support this formula.

DOI: [10.1103/PhysRevLett.99.014101](http://dx.doi.org/10.1103/PhysRevLett.99.014101) PACS numbers: 05.45.Ac, 05.20.-y, 05.45.Mt

Diffusion is a paradigm of deterministic chaos, and its study is not new, dating back to Chirikov [[1](#page-3-1)]. Its existence in Hamiltonian systems has been extensively established using a variety of approaches $[2-7]$ $[2-7]$ $[2-7]$. However, it was not clear that a satisfactory transport theory could be properly formulated. In order to understand deterministic diffusion, nonequilibrium statistical mechanics was suitably combined with dynamical system theory [[8](#page-3-4)[,9\]](#page-3-5). In this modern formulation, the stochastic properties of chaotic systems can be determined by the spectral properties of the Perron-Frobenius operator *U*. One of the most important properties is the exponential relaxation to the thermodynamic equilibrium, explained in great detail at the microscopic level. The relaxation rates γ_m , known as Pollicott-Ruelle (PR) resonances $[10,11]$ $[10,11]$ $[10,11]$ $[10,11]$, are related to the poles z_m of the matrix elements of the resolvent $R(z) = (z - U)^{-1}$ as $z_m = e^{\gamma_m}$. These resonances are located inside the unit circle in the complex *z* plane, whereas the spectrum of *U* is confined to the unit circle because of unitarity [\[12\]](#page-3-8). Furthermore, the wave number dependence of the leading PR resonance determines the normal diffusion coefficient for spatially periodic systems [[13](#page-3-9),[14](#page-3-10)]. These results are rigorous only for hyperbolic systems, though they have been confirmed in the high stochasticity approximation for some mixed systems such as the kicked rotor (standard map) [\[15\]](#page-3-11), the kicked top [[16](#page-3-12)], and the perturbed cat map [\[17\]](#page-3-13). The PR resonances are essential not only in classical dynamics but also in quantum dynamics. Recently, a microwave billiard experiment demonstrated a deep connection between quantum properties and classical diffusion through the spectral autocorrelation function [\[18\]](#page-3-14).

In this Letter, the leading PR resonance will be calculated analytically for the general class of two-dimensional area-preserving maps

$$
I_{n+1} = I_n + Kf(\theta_n),
$$

\n
$$
\theta_{n+1} = \theta_n + c\alpha(I_{n+1}) \mod 2\pi,
$$
\n(1)

defined on the cylinder $-\pi \le \theta \le \pi$, $-\infty \le I \le \infty$. Here $f(\theta)$ is the impulse function, $\alpha(I) = \alpha(I + 2\pi r)$ is the

the stochasticity parameter. This map is commonly called
the *radial twist map* [19] periodic in action (the nonperi-
odic case can be considered in the limit
$$
r \rightarrow \infty
$$
). Although
considerable theoretical development in the study of dif-
fusion has been achieved for the linear rotation number
(LRN) case $c\alpha(I) \equiv I$ [2-6], many physically realistic
systems are best described just by the nonlinear cases.
Such maps have been extensively used in various areas of
physics, especially in celestial mechanics [20], plasma and
fluid physics [21], and astrophysics and accelerator devices
[19,22]. However, the normal transport properties of such
maps have not been studied previously [7].

rotation number, *c* and *r* are real parameters, and *K* is

The analysis of the map (1) (1) is best carried out in Fourier space. The Fourier expansion of distribution function at the *n*th time, denoted by ρ_n , is given by

$$
\rho_n(I,\theta) = \sum_m \int dq e^{i(m\theta + qI)} a_n(m,q). \tag{2}
$$

The moments can be found from the Fourier amplitudes via $\langle I^p \rangle_n = (2\pi)^2 [(i\partial_q)^p a_n(q)]_{q=0}$, where $a_n(q) \equiv a_n(0, q)$. The discrete time evolution of the probability density ρ is governed by the Perron-Frobenius operator *U* defined by $\rho_{n+1}(I, \theta) = U \rho_n(I, \theta)$. The matrix representation of *U* may be considered as the conditional probability density for the transition of the initial state (I', θ') to a final state (I, θ) in one time step, ruled by (1) . The law of evolution of the Fourier coefficients will be given by

$$
a_n(m, q) = \sum_{m'} \int dq' \mathcal{A}_m(r, c, q' - q)
$$

$$
\times \mathcal{J}_{m-m'}(-Kq') a_{n-1}(m', q'), \qquad (3)
$$

where $(m, q) = (2\pi)^{-2} \exp[-i(m\theta_0 + qI_0)].$ The Fourier decompositions of the $\alpha(I)$ and $f(\theta)$ functions are

$$
\mathcal{A}_m(r, c, x) = \sum_l \delta(lr^{-1} - x) \mathcal{G}_l(r, mc), \tag{4}
$$

0031-9007/07/99(1)/014101(4) 014101-1 © 2007 The American Physical Society

$$
G_l(r, x) = \frac{1}{2\pi} \int d\theta \exp\{-i[x\alpha(r\theta) - l\theta]\}, \qquad (5)
$$

$$
\mathcal{J}_m(x) = \frac{1}{2\pi} \int d\theta \exp\{-i[m\theta - xf(\theta)]\}.
$$
 (6)

If the rotation number $\alpha(I)$ is an odd function, then $G_l(r, x)$ is a real function and $G_{\pm |l|}(r, x) = G_{|l|}(r, \pm x)$. The integral function $\mathcal{J}_m(x)$ assumes the following series expansions $J_m(x) = \delta_{m,0} + \sum_{n=1}^{\infty} c_{m,n} x^n$, whose coefficients are given by

$$
c_{m,n} = \frac{1}{2\pi} \frac{i^n}{n!} \int d\theta f^n(\theta) e^{-im\theta}.
$$
 (7)

Note that if $f(-\theta) = -f(\theta)$, the coefficients $c_{m,n}$ are real for all $\{m, n\}$ and $\mathcal{J}_{-m}(x) = \mathcal{J}_m(-x)$.

Let us consider the decomposition method of the resolvent $R(z)$ based on the projection operator techniques utilized in Ref. $[23]$. The law of evolution (3) (3) can be written as $a_n(m, q) = U^n a_0(m, q)$, where U^n is given by the identity $\oint_C dzR(z)z^n = 2\pi iU^n$, where the spectrum of *U* is located inside or on the unit circle *C* around the origin in the complex *z* plane. The contour of integration is then a circle lying just outside the unit circle. We then introduce a mutually orthogonal projection operator $P = |q, 0\rangle \langle q, 0|$, which picks out this *relevant* state from the resolvent, and its complement $Q = 1 - P$, which projects on the *irrelevant* states. In order to calculate the diffusion coefficient $D = \lim_{n \to \infty} (2n)^{-1} \langle (I - I_0)^2 \rangle_n$, we can decompose the projection of the resolvent $PR(z)$ into two parts: $PR(z)$ = $PR(z)P + PR(z)Q$. The last part can be neglected because $a_0(m \neq 0, q) \propto e^{-im\theta_0}$, whose expected value disappears at random initial conditions on $[-\pi, \pi]$. Hence, the relevant law of evolution of the Fourier amplitudes, omitting initial angular fluctuations, assumes the following form:

$$
a_n(q) = \frac{1}{2\pi i} \oint_C dz \frac{z^n}{z - \sum_{j=0}^{\infty} z^{-j} \Psi_j(q)} a_0(q), \quad (8)
$$

where the memory functions $\Psi_j(q)$ obtained for the system [\(1\)](#page-0-0) are given by

$$
\Psi_0(q) = \mathcal{J}_0(-Kq),\tag{9a}
$$

$$
\Psi_1(q) = \sum_m \mathcal{J}_{-m}(-Kq)\mathcal{J}_m(-Kq)\mathcal{G}_0(r, mc), \tag{9b}
$$

$$
\Psi_{j\geq2}(q) = \sum_{\{m\}} \sum_{\{\lambda\}^{\dagger}} \mathcal{J}_{-m_1}(-Kq) \mathcal{J}_{m_j}(-Kq) \mathcal{G}_{\lambda_1}(r, m_1 c)
$$
\n
$$
\times \prod_{i=2}^{j} \mathcal{G}_{\lambda_i}(r, m_i c)
$$
\n
$$
\times \mathcal{J}_{m_{i-1}-m_i} \left[-K \left(q + r^{-1} \sum_{k=1}^{i-1} \lambda_k \right) \right].
$$
\n(9c)

Hereafter, the following convention will be used: Wave numbers denoted by *Roman indices* can take only *nonzero* integer values, whereas wave numbers denoted by *Greek* *indices* can take *all* integer values, including zero. For each fixed *j*, the sets of wave numbers are defined by ${m}$ ${m_1, \ldots, m_j}$ and ${\lambda}^{\dagger} = {\lambda_1, \ldots, \lambda_j}$, where the superscript denotes the restriction $\sum_{i=1}^{j} \lambda_i = 0$.

For usual physical situations (assumed here), we have $c_{0,1} \propto \int d\theta f(\theta) \equiv 0$ [[24](#page-3-21)]. In this case, $\Psi_0(q \to 0) = 1 +$ $\mathcal{O}(q^2)$. In the general case, we have $\Psi_j(q \to 0) = \mathcal{O}(q^2)$ for $j \ge 1$. The integral ([8](#page-1-0)) can be solved by the method of residues truncating the series at $j = N$ and after taking the limit $N \rightarrow \infty$. The trivial resonance $z = 1$ is related to the equilibrium state found for $m = m' = q = 0$. The nontrivial leading resonance can be evaluated by the wellknown Newton-Raphson iterative method beginning with $z_0 = 1$ and converging to $z_\infty = \sum_{j=0}^\infty \Psi_j(q) + \mathcal{O}(q^4)$. In the limit $q \rightarrow 0$, this resonance will dominate the integral in the asymptotic limit $n \rightarrow \infty$. Thus, the evolution of the relevant Fourier coefficients can be written as $a_n(q)$ = $exp[n\gamma(q)]a_0(q)$, where the leading PR resonance is given by

$$
\gamma(q) = \ln \sum_{j=0}^{\infty} \Psi_j(q) + \mathcal{O}(q^4). \tag{10}
$$

From [\(10\)](#page-1-1) the diffusion coefficient can be calculated as $D = -(1/2)[\partial_q^2 \sum_{j=0}^{\infty} \Psi_j(q)]_{q=0}$. Applying this expression to the memory functions $(9a)$ $(9a)$ – $(9c)$ $(9c)$, the general exact diffusion coefficient formula will be given by

$$
\frac{D}{D_{ql}} = 1 + 2 \sum_{m=1}^{\infty} \sigma_{m,m} \text{Re}[G_0(r, mc)]
$$

+
$$
\sum_{j=2}^{\infty} \sum_{\{m\}} \sum_{\{\lambda\}^{\dagger}} \sigma_{m_1, m_j} G_{\lambda_1}(r, m_1 c)
$$

$$
\times \prod_{i=2}^{j} G_{\lambda_i}(r, m_i c) \mathcal{J}_{m_{i-1} - m_i} \left(-\frac{K}{r} \sum_{k=1}^{i-1} \lambda_k \right), \quad (11)
$$

where $D_{ql} = -c_{0,2}K^2$ is the quasilinear diffusion coefficient and $\sigma_{m,m'} = (c_{-m,1}c_{m,1})/c_{0,2}$. The diffusion formula [\(11\)](#page-1-3) assumes a more simple form for the LRN case (where *I* can be replaced by *I* mod 2π), yielding $G_{\lambda}(1, x) = \delta_{\lambda, x}$ and

$$
\frac{D_{\text{LRN}}}{D_{ql}} = 1 + \sum_{j=2}^{\infty} \sum_{\{m\}^{\dagger}} \sigma_{m_1, m_j} \prod_{i=2}^{j} \mathcal{J}_{m_{i-1} - m_i} \left(-K \sum_{k=1}^{i-1} m_k \right). \tag{12}
$$

As a check of this theory, we can first calculate D_{LRN} explicitly for two cases: (i) the well-known standard map (*sm*) as an example of a mixed system and (ii) a sawtooth map (*sw*) as an example of a hyperbolic system in a certain parameter regime. In case (i), we have $f(\theta) = \sin(\theta)$, and, hence, $\mathcal{J}_m(x)$ is the Bessel function of the first kind $J_m(x)$, $D_{ql} = K^2/4$, and $\sigma_{m,m'} = (\pm \delta_{m,\pm 1})(\pm \delta_{m',\pm 1})$. The resultant expression for D_{sm} is very similar to (12) . The first

terms of the expansion coincide with the Rechester, Rosenbluth, and White results $[2]$ $[2]$: D_{sm}/D_{ql} $1 - 2J_2(K) + 2J_2^2(K) + \cdots$. In case (ii), we have $f(\theta) =$ θ ; hence, $\mathcal{J}_m(x) = \sin[\pi(m-x)]/\pi(m-x)$, $D_{ql} =$ $K^2 \pi^2/6$, and $\sigma_{m,m'} = (6/\pi^2)[(-1)^{m-m'}/mm']$. The sawtooth map is hyperbolic when $|K + 2| > 2$ [[25](#page-3-22)]. Finally, we also consider a third case where $f(x) = \alpha(x) = \sin(x)$, known as the *Harper map* (*Hm*), as an example of a map with a nonlinear rotation number. The resultant expression for D_{Hm} is very similar to [\(11\)](#page-1-3), where $G_{\lambda}(1, x) = J_{\lambda}(x)$ and other terms follow case (i). The analytical results of the three cases are compared with numerical calculations of D/D_{al} in Figs. [1\(a\)](#page-2-0)–[1\(c\)](#page-2-0). Despite the accelerator modes, whose kinetic properties are anomalous [\[26\]](#page-3-23), all theoretical results are in excellent agreement with the numerical simulations.

A question of interest that arises here is the oscillatory character of the diffusion coefficient for maps with a periodic rotation number (including the LRN case), in contrast to the fast asymptotic behavior exhibited by maps with a nonperiodic rotation number (see, for example, [[7](#page-3-3)]). The nonperiodic case can be considered by applying the limit $r \rightarrow \infty$. For such a case, we have $\lambda r^{-1} \rightarrow s$, $r^{-1} \sum_{\lambda} \rightarrow \int ds$, and $rG_{\lambda}(r, x) \rightarrow G(s, x)$ is the *s*-Fourier transform of $e^{-ix\alpha(I)}$. For cases where $G(s, x)$ is well defined, the limit $r \rightarrow \infty$ produces high oscillatory integrals resulting in $D \rightarrow D_{ql}$ without any oscillation. In the case of a standard map, Chirikov [[1](#page-3-1)] conjectured that the oscillatory aspect of the diffusion curve was an effect of the ''islands of stability,'' but a satisfactory explanation of the oscillations has not been given yet [\[27\]](#page-3-24).

Returning to Eq. (11) , we can note that, in the limit of high stochasticity parameter K , the diffusion coefficient does not necessarily converge to the quasilinear value in the nonlinear rotation number cases. The standard argument in this respect is the so-called *random phase approximation* [\[1](#page-3-1),[19](#page-3-15)]. The intuitive idea is that, for large values of *K*, the phases $\theta_n(I, \theta)$ oscillate so fast that they become uncorrelated from θ . In order to verify this effect, we can take the limit $K \to \infty$ of [\(11\)](#page-1-3) by setting $\lambda_i = 0$ for all *i* to avoid terms of order $O(K^{-1/2})$. Once $|G_0(r, mc)| < 1$ for $m \neq 0$, the asymptotic diffusion becomes a geometric sum whose result is

$$
\lim_{K \to \infty} \frac{D}{D_{ql}} = 1 + \sum_{m \neq 0} \sigma_{m,m} \frac{G_0(r, mc)}{1 - G_0(r, mc)}.
$$
 (13)

The rate (13) diverges at $c = 0$, creating a kind of accelerator mode. Indeed, a direct calculation through Eq. [\(1\)](#page-0-0) shows that D/D_{ql} diverges as *n* in this case for all $K \neq 0$.

K!1

FIG. 1. Theoretical diffusion coefficient rate D/D_{ql} (solid lines) compared with numerical simulations calculated for $n = 100$. In (a), (b), and (c) we truncate the diffusion formulas ([11](#page-1-3)) and [\(12\)](#page-1-4) at $j = 2$. A better agreement for small values of *K* requires the calculation of further memory functions. (a) Standard map. The accelerator modes give rise to spikes in the figure. (b) Sawtooth map and (c) Harper map for $c = 5.5$ (with the presence of accelerator modes). (d) Harper map as a function of c for $K = 10^5$. The angular evolution induces fast and slow modes of diffusion even in the high stochasticity regime. This strong angular memory effect decays as $2J_0(c)/[1-J_0(c)].$

In Fig. [1\(d\)](#page-2-0), we consider the double sine map for $K = 10^5$. As one can see, even in the high stochasticity regime, where the random phase approximation is expected to hold, the rate D/D_{ql} oscillates between the zeros of $J_0(c)$. Its maximum and minimum values are ruled by zeros of $J_1(c)$. This strong angular memory effect is a remarkable result.

Another important question concerns the higher-order transport coefficients that play a central role in the large deviations theory. These coefficients can be obtained through the following dispersion relation:

$$
\mathcal{D}_{2l} \equiv \lim_{n \to \infty} \frac{\langle (I_n - I_0)^{2l} \rangle_c}{(2l!)n} = \frac{(-1)^l}{(2l)!} \partial_q^{2l} \gamma(q)|_{q=0}, \quad (14)
$$

where $l \ge 1$ and $\langle \rangle_c$ denotes cumulant moments [\[28\]](#page-3-25). The diffusion coefficient is defined by $D = \mathcal{D}_2$. The higherorder coefficients \mathcal{D}_{2l} can be calculated by introducing successive corrections $O(q^{2l})$ in [\(10\)](#page-1-1). If the evolution process were asymptotically truly diffusive, then the angle-averaged density would have a Gaussian contour after a sufficiently long time. A first indication of the deviation of a density function from a Gaussian packet is given by the fourth-order Burnett coefficient $B = \mathcal{D}_4$: If *B* = 0, then the kurtosis $\kappa(x) = \frac{\langle x^4 \rangle}{\langle x^2 \rangle^2}$ for $x = I_n - I_0$ is equal to 3 in the limit $n \rightarrow \infty$, a result valid for a Gaussian density for all times. These aspects will be treated elsewhere [[29](#page-3-26)].

The author thanks Professor A. Saa, Professor W. F. Wreszinski, and Professor M. S. Hussein for helpful discussions. This work was supported by CAPES.

[*r](#page-0-2)veneger@fma.if.usp.br

- [1] B. V. Chirikov, Phys. Rep. **52**, 263 (1979).
- [2] A. B. Rechester and R. B. White, Phys. Rev. Lett. **44**, 1586 (1980); A. B. Rechester, M. N. Rosenbluth, and R. B. White, Phys. Rev. A **23**, 2664 (1981).
- [3] H. D. I. Abarbanel, Physica (Amsterdam) **4D**, 89 (1981).
- [4] J. R. Cary, J. D. Meiss, and A. Bhattacharjee, Phys. Rev. A **23**, 2744 (1981); J. R. Cary and J. D. Meiss, Phys. Rev. A **24**, 2664 (1981); J. D. Meiss, J. R. Cary, C. Grebogi, J. D. Crawford, A. N. Kaufman, and H. D. I. Abarbanel, Physica (Amsterdam) **6D**, 375 (1983).
- [5] R. S. Mackay, J. D. Meiss, and I. C. Percival, Phys. Rev. Lett. **52**, 697 (1984).
- [6] I. Dana, N. W. Murray, and I. C. Percival, Phys. Rev. Lett. **62**, 233 (1989); I. Dana, Phys. Rev. Lett. **64**, 2339 (1990); Q. Chen, I. Dana, J. D. Meiss, N. W. Murray, and I. C. Percival, Physica (Amsterdam) **46D**, 217 (1990).
- [7] T. Hatori, T. Kamimura, and Y. H. Hichikawa, Physica (Amsterdam) **14D**, 193 (1985). The authors conclude that, for $f(\theta) = \sin(\theta)$ in [\(1](#page-0-0)), the diffusion coefficient relaxes to the quasilinear value $K^2/4$ for *any* nonlinear $\alpha(I)$. They do not take into consideration the possibility of periodicity in $\alpha(I)$.
- [8] P. Gaspard, *Chaos, Scattering and Statistical Mechanics* (Cambridge University Press, Cambridge, England, 1998).
- [9] J. R. Dorfman, *An Introduction to Chaos in Nonequilibrium Statistical Mechanics* (Cambridge University Press, Cambridge, England, 1999).
- [10] M. Pollicott, Inventiones Mathematicae **81**, 413 (1985); **85**, 147 (1986).
- [11] D. Ruelle, Phys. Rev. Lett. **56**, 405 (1986); J. Stat. Phys. **44**, 281 (1986).
- [12] H. H. Hasegawa and W. C. Saphir, Phys. Rev. A **46**, 7401 (1992).
- [13] P. Cvitanović, J.-P. Eckmann, and P. Gaspard, Chaos Solitons Fractals **6**, 113 (1995).
- [14] S. Tasaki and P. Gaspard, J. Stat. Phys. **81**, 935 (1995).
- [15] M. Khodas and S. Fishman, Phys. Rev. Lett. **84**, 2837 (2000); M. Khodas, S. Fishman, and O. Agam, Phys. Rev. E **62**, 4769 (2000).
- [16] J. Weber, F. Haake, and P. Seba, Phys. Rev. Lett. **85**, 3620 (2000); J. Phys. A **34**, 7195 (2001).
- [17] G. Blum and O. Agam, Phys. Rev. E **62**, 1977 (2000).
- [18] K. Pance, W. Lu, and S. Sridhar, Phys. Rev. Lett. **85**, 2737 (2000).
- [19] A. J. Lichtenberg and M. A. Lieberman, *Regular and Chaotic Dynamics* (Springer, New York, 1992).
- [20] J.L. Zhou, Y.S. Sun, J.Q. Zheng, and M.J. Valtonen, Astron. Astrophys. **364**, 887 (2000); B. V. Chirikov and V. V. Vecheslavov, Astron. Astrophys. **221**, 146 (1989); T. Y. Petrosky, Phys. Lett. A **117**, 328 (1986).
- [21] A. Punjabi, A. Verma, and A. Boozer, Phys. Rev. Lett. **69**, 3322 (1992); D. del-Castillo-Negrette and P. J. Morrison, Phys. Fluids A 5, 948 (1993); J. T. Mendonça, Phys. Fluids B **3**, 87 (1991); H. Wobig and R. H. Fowler, Plasma Phys. Controlled Fusion **30**, 721 (1988).
- [22] A. Veltri and V. Carbone, Phys. Rev. Lett. **92**, 143901 (2004); A. P. S. de Moura and P. S. Letelier, Phys. Rev. E **62**, 4784 (2000); E. Fermi, Phys. Rev. **75**, 1169 (1949); J. S. Berg, R. L. Warnock, R. D. Ruth, and E. Forest, Phys. Rev. E **49**, 722 (1994).
- [23] H. H. Hasegawa and W. C. Saphir, in *Aspects of Nonlinear Dynamics: Solitons and Chaos*, edited by I. Antoniou and F. Lambert (Springer, Berlin, 1991), Vol. 193; R. Balescu, *Statistical Dynamics, Matter out of Equilibrium* (Imperial College Press, London, 1997).
- [24] It is a necessary condition for the validity of the Kol'mogorov-Arnol'd-Moser theorem on ([1\)](#page-0-0). In particular, this condition guarantees that rotational invariant circles with sufficiently irrational frequency persist under small *K* perturbations. For more details, see J. Moser, *Stable and Random Motions in Dynamical Systems* (Princeton University, Princeton, 1973).
- [25] V. I. Arnold and A. Avez, *Ergodic Problems of Classical Mechanics* (Benjamin, New York, 1968).
- [26] G. M. Zaslavsky, Phys. Rep. **371**, 461 (2002).
- [27] R. Venegeroles (to be published).
- [28] J. A. McLennan, *Introduction to Non-Equilibrium Statistical Mechanics* (Prentice Hall, Englewood Cliffs, NJ, 1989).
- [29] R. Venegeroles, Non-Gaussian Features of the Hamiltonian Transport (to be published).