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The leading Pollicott-Ruelle resonance is calculated analytically for a general class of two-dimensional
area-preserving maps. Its wave number dependence determines the normal transport coefficients. In
particular, a general exact formula for the diffusion coefficient D is derived without any high stochasticity
approximation, and a new effect emerges: The angular evolution can induce fast or slow modes of
diffusion even in the high stochasticity regime. The behavior of D is examined for three particular cases:
(i) the standard map, (ii) a sawtooth map, and (iii) a Harper map as an example of a map with a nonlinear
rotation number. Numerical simulations support this formula.
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Diffusion is a paradigm of deterministic chaos, and its
study is not new, dating back to Chirikov [1]. Its existence
in Hamiltonian systems has been extensively established
using a variety of approaches [2–7]. However, it was not
clear that a satisfactory transport theory could be properly
formulated. In order to understand deterministic diffusion,
nonequilibrium statistical mechanics was suitably com-
bined with dynamical system theory [8,9]. In this modern
formulation, the stochastic properties of chaotic systems
can be determined by the spectral properties of the Perron-
Frobenius operator U. One of the most important proper-
ties is the exponential relaxation to the thermodynamic
equilibrium, explained in great detail at the microscopic
level. The relaxation rates �m, known as Pollicott-Ruelle
(PR) resonances [10,11], are related to the poles zm of the
matrix elements of the resolvent R�z� � �z�U��1 as
zm � e�m . These resonances are located inside the unit
circle in the complex z plane, whereas the spectrum of U
is confined to the unit circle because of unitarity [12].
Furthermore, the wave number dependence of the leading
PR resonance determines the normal diffusion coefficient
for spatially periodic systems [13,14]. These results are
rigorous only for hyperbolic systems, though they have
been confirmed in the high stochasticity approximation for
some mixed systems such as the kicked rotor (standard
map) [15], the kicked top [16], and the perturbed cat map
[17]. The PR resonances are essential not only in classical
dynamics but also in quantum dynamics. Recently, a mi-
crowave billiard experiment demonstrated a deep connec-
tion between quantum properties and classical diffusion
through the spectral autocorrelation function [18].

In this Letter, the leading PR resonance will be calcu-
lated analytically for the general class of two-dimensional
area-preserving maps
 

In�1 � In � Kf��n�;

�n�1 � �n � c��In�1� mod2�;
(1)

defined on the cylinder �� � � < �, �1< I <1. Here
f��� is the impulse function, ��I� � ��I � 2�r� is the

rotation number, c and r are real parameters, and K is
the stochasticity parameter. This map is commonly called
the radial twist map [19] periodic in action (the nonperi-
odic case can be considered in the limit r! 1). Although
considerable theoretical development in the study of dif-
fusion has been achieved for the linear rotation number
(LRN) case c��I� � I [2–6], many physically realistic
systems are best described just by the nonlinear cases.
Such maps have been extensively used in various areas of
physics, especially in celestial mechanics [20], plasma and
fluid physics [21], and astrophysics and accelerator devices
[19,22]. However, the normal transport properties of such
maps have not been studied previously [7].

The analysis of the map (1) is best carried out in Fourier
space. The Fourier expansion of distribution function at the
nth time, denoted by �n, is given by

 �n�I; �� �
X
m

Z
dqei�m��qI�an�m; q�: (2)

The moments can be found from the Fourier amplitudes via
hIpin � �2��

2��i@q�
pan�q�	q�0, where an�q� � an�0; q�.

The discrete time evolution of the probability density �
is governed by the Perron-Frobenius operator U defined by
�n�1�I; �� � U�n�I; ��. The matrix representation of U
may be considered as the conditional probability density
for the transition of the initial state �I0; �0� to a final state
�I; �� in one time step, ruled by (1). The law of evolution of
the Fourier coefficients will be given by
 

an�m; q� �
X
m0

Z
dq0Am�r; c; q0 � q�


 J m�m0 ��Kq
0�an�1�m

0; q0�; (3)

where a0�m; q� � �2��
�2 exp��i�m�0 � qI0�	. The

Fourier decompositions of the ��I� and f��� functions are

 A m�r; c; x� �
X
l

��lr�1 � x�Gl�r;mc�; (4)
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 G l�r; x� �
1

2�

Z
d� expf�i�x��r�� � l�	g; (5)

 J m�x� �
1

2�

Z
d� expf�i�m�� xf���	g: (6)

If the rotation number ��I� is an odd function, then Gl�r; x�
is a real function and G�jlj�r; x� � Gjlj�r;�x�. The integral
function J m�x� assumes the following series expansions
J m�x� � �m;0 �

P
1
n�1 cm;nx

n, whose coefficients are
given by

 cm;n �
1

2�
in

n!

Z
d�fn���e�im�: (7)

Note that if f���� � �f���, the coefficients cm;n are real
for all fm; ng and J�m�x� � J m��x�.

Let us consider the decomposition method of the resol-
vent R�z� based on the projection operator techniques
utilized in Ref. [23]. The law of evolution (3) can be
written as an�m; q� � Una0�m; q�, where Un is given by
the identity

H
C dzR�z�z

n � 2�iUn, where the spectrum of
U is located inside or on the unit circle C around the origin
in the complex z plane. The contour of integration is then a
circle lying just outside the unit circle. We then introduce a
mutually orthogonal projection operator P � jq; 0ihq; 0j,
which picks out this relevant state from the resolvent, and
its complement Q � 1� P, which projects on the irrele-
vant states. In order to calculate the diffusion coefficient
D � limn!1�2n��1h�I � I0�

2in, we can decompose the
projection of the resolvent PR�z� into two parts: PR�z� �
PR�z�P� PR�z�Q. The last part can be neglected because
a0�m � 0; q� / e�im�0 , whose expected value disappears
at random initial conditions on ���;��. Hence, the rele-
vant law of evolution of the Fourier amplitudes, omitting
initial angular fluctuations, assumes the following form:

 an�q� �
1

2�i

I
C
dz

zn

z�
P
1
j�0 z

�j�j�q�
a0�q�; (8)

where the memory functions �j�q� obtained for the system
(1) are given by
 

�0�q� � J 0��Kq�; (9a)

�1�q� �
X
m

J�m��Kq�J m��Kq�G0�r;mc�; (9b)

�j�2�q� �
X
fmg

X
f�gy

J�m1
��Kq�J mj

��Kq�G�1
�r;m1c�



Yj
i�2

G�i�r;mic�


 J mi�1�mi

�
�K

�
q� r�1

Xi�1

k�1

�k

��
: (9c)

Hereafter, the following convention will be used: Wave
numbers denoted by Roman indices can take only nonzero
integer values, whereas wave numbers denoted by Greek

indices can take all integer values, including zero. For each
fixed j, the sets of wave numbers are defined by fmg �
fm1; . . . ; mjg and f�gy � f�1; . . . ; �jg, where the super-
script denotes the restriction

Pj
i�1 �i � 0.

For usual physical situations (assumed here), we have
c0;1 /

R
d�f��� � 0 [24]. In this case, �0�q! 0� � 1�

O�q2�. In the general case, we have �j�q! 0� � O�q2�

for j � 1. The integral (8) can be solved by the method of
residues truncating the series at j � N and after taking the
limit N ! 1. The trivial resonance z � 1 is related to the
equilibrium state found for m � m0 � q � 0. The non-
trivial leading resonance can be evaluated by the well-
known Newton-Raphson iterative method beginning with
z0 � 1 and converging to z1 �

P
1
j�0 �j�q� �O�q4�. In

the limit q! 0, this resonance will dominate the integral
in the asymptotic limit n! 1. Thus, the evolution of the
relevant Fourier coefficients can be written as an�q� �
exp�n��q�	a0�q�, where the leading PR resonance is given
by

 ��q� � ln
X1
j�0

�j�q� �O�q4�: (10)

From (10) the diffusion coefficient can be calculated as
D � ��1=2��@2

q
P
1
j�0 �j�q�	q�0. Applying this expression

to the memory functions (9a)–(9c), the general exact dif-
fusion coefficient formula will be given by

 

D
Dql
� 1� 2

X1
m�1

�m;mRe�G0�r;mc�	

�
X1
j�2

X
fmg

X
f�gy

�m1;mj
G�1
�r;m1c�



Yj
i�2

G�i�r;mic�J mi�1�mi

�
�
K
r

Xi�1

k�1

�k

�
; (11)

where Dql � �c0;2K2 is the quasilinear diffusion coeffi-
cient and �m;m0 � �c�m;1cm0;1�=c0;2. The diffusion formula
(11) assumes a more simple form for the LRN case (where
I can be replaced by I mod 2�), yielding G��1; x� � ��;x
and

 

DLRN

Dql
� 1�

X1
j�2

X
fmgy

�m1;mj

Yj
i�2

J mi�1�mi

�
�K

Xi�1

k�1

mk

�
:

(12)

As a check of this theory, we can first calculate DLRN

explicitly for two cases: (i) the well-known standard map
(sm) as an example of a mixed system and (ii) a sawtooth
map (sw) as an example of a hyperbolic system in a certain
parameter regime. In case (i), we have f��� � sin���, and,
hence, J m�x� is the Bessel function of the first kind Jm�x�,
Dql � K2=4, and �m;m0 � ���m;�1����m0;�1�. The result-
ant expression for Dsm is very similar to (12). The first
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terms of the expansion coincide with the Rechester,
Rosenbluth, and White results [2]: Dsm=Dql �

1� 2J2�K� � 2J2
2�K� �    . In case (ii), we have f��� �

�; hence, J m�x� � sin���m� x�	=��m� x�, Dql �

K2�2=6, and �m;m0 � �6=�2����1�m�m
0
=mm0	. The saw-

tooth map is hyperbolic when jK � 2j> 2 [25]. Finally,
we also consider a third case where f�x� � ��x� � sin�x�,
known as the Harper map (Hm), as an example of a map
with a nonlinear rotation number. The resultant expression
for DHm is very similar to (11), where G��1; x� � J��x�
and other terms follow case (i). The analytical results of the
three cases are compared with numerical calculations of
D=Dql in Figs. 1(a)–1(c). Despite the accelerator modes,
whose kinetic properties are anomalous [26], all theoretical
results are in excellent agreement with the numerical
simulations.

A question of interest that arises here is the oscillatory
character of the diffusion coefficient for maps with a
periodic rotation number (including the LRN case), in
contrast to the fast asymptotic behavior exhibited by
maps with a nonperiodic rotation number (see, for ex-
ample, [7]). The nonperiodic case can be considered by
applying the limit r! 1. For such a case, we have
�r�1 ! s, r�1P

� !
R
ds, and rG��r; x� ! G�s; x� is the

s-Fourier transform of e�ix��I�. For cases where G�s; x� is

well defined, the limit r! 1 produces high oscillatory
integrals resulting in D! Dql without any oscillation. In
the case of a standard map, Chirikov [1] conjectured that
the oscillatory aspect of the diffusion curve was an effect of
the ‘‘islands of stability,’’ but a satisfactory explanation of
the oscillations has not been given yet [27].

Returning to Eq. (11), we can note that, in the limit of
high stochasticity parameter K, the diffusion coefficient
does not necessarily converge to the quasilinear value in
the nonlinear rotation number cases. The standard argu-
ment in this respect is the so-called random phase approxi-
mation [1,19]. The intuitive idea is that, for large values of
K, the phases �n�I; �� oscillate so fast that they become
uncorrelated from �. In order to verify this effect, we can
take the limit K ! 1 of (11) by setting �i � 0 for all i to
avoid terms of order O�K�1=2�. Once jG0�r;mc�j< 1 for
m � 0, the asymptotic diffusion becomes a geometric sum
whose result is

 lim
K!1

D
Dql
� 1�

X
m�0

�m;m
G0�r;mc�

1�G0�r;mc�
: (13)

The rate (13) diverges at c � 0, creating a kind of accel-
erator mode. Indeed, a direct calculation through Eq. (1)
shows that D=Dql diverges as n in this case for all K � 0.

FIG. 1. Theoretical diffusion coefficient rate D=Dql (solid lines) compared with numerical simulations calculated for n � 100. In
(a), (b), and (c) we truncate the diffusion formulas (11) and (12) at j � 2. A better agreement for small values of K requires the
calculation of further memory functions. (a) Standard map. The accelerator modes give rise to spikes in the figure. (b) Sawtooth map
and (c) Harper map for c � 5:5 (with the presence of accelerator modes). (d) Harper map as a function of c for K � 105. The angular
evolution induces fast and slow modes of diffusion even in the high stochasticity regime. This strong angular memory effect decays as
2J0�c�=�1� J0�c�	.
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In Fig. 1(d), we consider the double sine map for K � 105.
As one can see, even in the high stochasticity regime,
where the random phase approximation is expected to
hold, the rate D=Dql oscillates between the zeros of
J0�c�. Its maximum and minimum values are ruled by zeros
of J1�c�. This strong angular memory effect is a remarkable
result.

Another important question concerns the higher-order
transport coefficients that play a central role in the large
deviations theory. These coefficients can be obtained
through the following dispersion relation:

 D 2l � lim
n!1

h�In � I0�
2lic

�2l!�n
�
��1�l

�2l�!
@2l
q ��q�jq�0; (14)

where l � 1 and h ic denotes cumulant moments [28]. The
diffusion coefficient is defined by D �D2. The higher-
order coefficients D2l can be calculated by introducing
successive corrections O�q2l� in (10). If the evolution
process were asymptotically truly diffusive, then the
angle-averaged density would have a Gaussian contour
after a sufficiently long time. A first indication of the
deviation of a density function from a Gaussian packet is
given by the fourth-order Burnett coefficient B �D4: If
B � 0, then the kurtosis 	�x� � hx4i=hx2i2 for x � In � I0

is equal to 3 in the limit n! 1, a result valid for a
Gaussian density for all times. These aspects will be
treated elsewhere [29].
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