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The Brownian dynamics of an optically trapped water droplet are investigated across the transition from
over- to underdamped oscillations. The spectrum of position fluctuations evolves from a Lorentzian shape
typical of overdamped systems (beads in liquid solvents) to a damped harmonic oscillator spectrum
showing a resonance peak. In this later underdamped regime, we excite parametric resonance by
periodically modulating the trapping power at twice the resonant frequency. The power spectra of position
fluctuations are in excellent agreement with the obtained analytical solutions of a parametrically
modulated Langevin equation.
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Parametric resonance provides an efficient and straight-
forward way to pump energy into an underdamped har-
monic oscillator [1]. If the resonance frequency of an
oscillator is dependent upon a number of parameters,
modulating any of these at twice the natural oscillation
frequency parametrically excites the resonance. Such be-
havior leads to surprising phenomena in the macroscopic
world (pumping a swing, stability of vessels, surface waves
in vibrated fluids) [2,3]. On the microscopic scale, where
stochastic forces become important, one refers to
Brownian parametric oscillators [4]. The parametric driv-
ing of Brownian systems has been shown to be at the origin
of some peculiar behaviors such as the squeezing of ther-
mal noise in Paul traps [5]. Parametrically excited oscil-
lations have also been reported in a single-crystal silicon
microelectromechanical system [6]. What makes paramet-
ric resonance useful is that it is easier to modulate a system
parameter rather than to apply an oscillating driving force.
Moreover, for finite but low damping rates, one never
reaches a stationary state with the damping forces dissipat-
ing the input power, and, consequently, the amplitudes of
oscillations diverge. Optically trapped microparticles con-
stitute a beautiful example of a Brownian damped har-
monic oscillator, and they are becoming an increasingly
common tool for the investigation of different fields of
basic and applied science [7]. Pumping mechanical energy
into optically trapped particles could open the way to many
applications. In optical tweezers, even though it is easy to
periodically modulate the laser power, parametric excita-
tion is usually ineffective because of the heavy damping
action of the surrounding fluid.

It has been reported that modulating the laser power at
the parametric resonant frequency in an overdamped sys-
tem increased the amplitude of fluctuations [8,9]. However,
these results have been difficult to reproduce and are in

contrast to the predictions of the Langevin equation [10–
12].

In this Letter, we demonstrate how parametric resonance
can be excited in optically trapped water droplets sus-
pended in air. We measure power spectra of position fluc-
tuations and find an excellent agreement with the
theoretical expectations based on Langevin dynamics.
Besides providing a resolution of a still-controversial issue,
our results are the first study of the dynamics of trapped
particles in a gas-damped tweezers system, a configuration
that is finding wider applications in the study of aerosol
droplets and associated atmospheric chemistry [13].

The dynamics of an optically trapped droplet is de-
scribed by the Langevin equation [14]:

 �x�t� ��2
0x�t� � �0 _x�t� � ��t�; (1)

where �2
0 � k=m is the angular frequency of the oscillator

depending on trap stiffness k and particle mass m. �0 �
6��a=Ccm is the viscous damping due to the medium
viscosity � and depending on particle radius a and massm.
To correct Stokes’ law for finite Knudsen number effects,
we introduced the empirical slip correction factor Cc, with
a 5.5%–1.6% reduction in drag for 3–10 �m diameter
droplets, respectively [15].

The stochastic force �, due to thermal agitation of
solvent molecules, is generally assumed to have a white
noise power spectrum:

 S��!� �
�0KBT
�m

: (2)

By Fourier transforming (1) and using (2), we can easily
obtain the power spectrum of position fluctuations [16]:
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KBT
k
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The ratio �0=�0 depends only slightly on particle size
and, in solvents with waterlike viscosities, is always
greater than 1 (the system is overdamped) up to power
levels of some tens of watts. For typical trapping powers of
order 10 mW in water, �0=�0 is typically >10. As a result,
only those frequencies smaller than �0, and hence much
smaller than �0, have a significant amplitude in the power
spectrum. Under these conditions, we can therefore neglect
!2 with respect to �2

0 in the first term of the denominator
in (3) and obtain the usual Lorentzian power spectrum
characterized by !�2 tails [16]. Such an overdamped
condition precludes the possibility of exciting significant
oscillations either directly or parametrically. To probe
oscillations in the liquid-damped regime, we would need
to be able to increase typical trap power by 4 orders of
magnitude. A more feasible route is to reduce viscosity by
2 orders of magnitude, which can be readily obtained by
trapping particles in air whose viscosity is approximately
1=55 of water (� � 1:8� 10�5 Pa s) [15].

Our optical tweezers are based around an inverted mi-
croscope with a high numerical aperture oil immersion
microscope objective (1.3 NA, 100� ). The continuous
wave laser is a Nd:YAG, frequency doubled to give 0–2 W
of 532 nm light. To couple the beam into the air medium, a
single cover slip is rested over the objective on a thin oil
layer. In a method similar to Refs. [17,18], a water aerosol
is produced using a nebulizer (3:4–6:0 �m) and injected
into a sample chamber 30 mm in diameter and 10 mm
deep, sealed by the cover slip. This isolates the droplets
from convective air currents and create a near-saturated
atmosphere within which the droplet size is stable. To
obtain a saturated atmosphere, we decrease the vapor
pressure of the droplets by adding salt to the water. In
such conditions, the droplet quickly reaches an equilibrium
size between condensation and evaporation and has a size
stability within 2% over the trapping time [19]. After a few
seconds, a droplet in the range of 4–7 �m is trapped at the
beam focus; see Fig. 1. For our laser powers, this gives a
trap resonance frequency in the vicinity of 2 kHz, and we
can maintain the trap for 40 min. For particles trapped in
fluid, a laser power of 10 mW is typical; however, to
maximize the stiffness of our traps (and hence �0), we
use powers of 100 s mW. Despite this, we calculate a
temperature increase of less than 1 K due to laser heating
[17]. Though this does not significantly enhance evapora-
tion, temperature gradients across the droplet, due to non-
uniform heating, could initiate thermal Marangoni effects.
However, being concerned with the center of mass dynam-
ics occurring in the kilohertz region, none of these rela-
tively slow phenomena disturbs the high frequency
dynamics. A quadrant photodetector, placed in the back
focal plane of the condenser lens, receives the light trans-
mitted through the droplet. By measuring the imbalance of
the light collected by the quadrants, the lateral displace-
ment of the droplet is deduced with a bandwidth of several
kilohertz and a precision of better than 5 nm [20]. The

stability of our system allows a series of power spectra to
be obtained from the same droplet while scanning one
parameter. The three reported experimental protocols
(Figs. 1–3) will refer to three independently trapped
droplets.

The power spectra of the measured displacement, for
two different trap powers, are shown in Fig. 1. It is clear
how the particle dynamics changes from an overdamped
Lorentzian spectrum with a high frequency roll-off pro-
portional to !�2 to an underdamped regime with a faster
roll-off !�4 and the appearance of a resonance peak near
1 kHz (more clearly seen in Fig. 2, which is plotted on a
linear scale). The emergence of such a peak arises from the

FIG. 1. The measured power spectra of trapped aerosol parti-
cle at two different powers. At lower power (black circles), it is
overdamped, and the mean squared amplitude of the high
frequency motion decays as !�2. At higher powers (white
circles), the aerosol is underdamped, and the mean squared
amplitude decays as !�4. Gray lines show the calculated slopes
�2 and �4. The inset shows an optical image of a trapped
aerosol particle.

FIG. 2. The measure power spectrum of a trapped water drop-
let for no modulation of the laser power (white circles) and
modulation at 3.9 kHz (�1 ’ 2�0) (black circles). The peak is
higher and narrower on the resonant condition, thus indicating
parametric excitation. The solid line below the black circles is
the predicted spectrum from (11).
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fact that the inertial terms in (1) are no longer negligible.
As a consequence, an average trajectory starting away
from the equilibrium position crosses the equilibrium po-
sition with a finite velocity. In this situation, the parametric
resonance is excited by modulating the strength of the
trapping potential. Ideally, the potential is made shallower
when the particle traverses the equilibrium position and
steeper again when the particle is far from the equilibrium
position. This is maximally efficient when we modulate the
potential at twice the natural oscillation frequency �0. To
consider this model in quantitative terms, we can rewrite
(1) in the presence of a parametrically modulated external
potential:

 �x�t� ��2
0�1� gf�t��x�t� � �0 _x�t� � ��t�; (4)

 f�t�T � � f�t�; �1< f�t�< 1; (5)

where 0< g< 1 measures the strength of modulation. By
Fourier transforming (4), we obtain
 

��!2 ��2
0 � i!�0�x̂�!�

��2
0g

X1

k��1

akx̂�!� k�1� � �̂�!�; (6)

where ak is the coefficient of the k2�=T � k�1 fre-
quency component of the Fourier series expansion of
f�t�. It is clear from Eq. (6) how parametric modulation
introduces a coupling between all of those frequencies

differing by an integer number of �1. We now introduce
the vectors Xn�!� � x̂�!� n�1� and Rn�!� �
�̂�!� n�1� and write the recursive relations:

 ���!� n�1�
2 ��2

0 � i�!� n�1��0�Xn�!�

��2
0g

X1

k��1

akXn�k�!� � Rn:

(7)

To obtain the power spectrum Sx�!�, for each frequency
! we compute X0�!�. This is coupled to all other compo-
nents in the array Xn. However, the strength of the coupling
will decay for large jnj, so that we can limit ourselves to a
finite number of components and write the matrix equation
for the array X�!� � �X�N�!�; . . . ; XN�!��:

 G�1�!�X�!� � R�!�; (8)

with
 

G�1
nk �!� � ���!� n�1�

2 ��2
0 � i�!� n�1��0��nk

��2
0gak�n: (9)

By matrix inversion, we obtain the power spectrum as
 

hX	0�!�X0�!
0�i �

XN

k;n��N

G	0k�!�G0l�!
0�hR	k�!�Rn�!

0�i

�
�0KBT
�m

XN

n��N

jG0n�!�j
2��!�!0�; (10)

and from the definition of power spectrum:

 Sx�!� �
�0KBT
�m

XN

k��N

jG0k�!�j
2: (11)

If �0 and �0 are known, we can use (11) to predict the
power spectrum of a droplet in a modulated trap. The white
circles in Fig. 2 show the measured power spectrum for a
water droplet trapped with constant laser power. The pres-
ence of the peak suggests that we are in an underdamped
regime. By fitting these data to Eq. (3), we can deduce the
resonant frequency �0=2� � 2:0 kHz and the damping
term �0 � 6:8 kHz for our experimental conditions. The
fitted value of �0 corresponds to the Stokes drag on an
aerosol droplet of radius 3:4 �m. We then apply the
square-wave modulation of the trapping power adjusted
to give the same average power as before, �1 ’ 2�0 and
g � 0:4. The black circles in Fig. 2 show the correspond-
ing power spectrum of the motion. As expected, the reso-
nance is excited, matching closely the expected behavior
obtained by applying the measured parameters �0, �0, �1,
g to Eq. (11), supporting our interpretation of a parametric
excitation of the resonance. Using these parameters with
(11), we can make further predictions about the dynamics
that can be verified by our observations. One comparison is
the predicted and observed form of the power spectra as a
function of the modulation frequency, both above and

FIG. 3. Evolution of position power spectra on varying the
modulation frequency �1. Parametric excitation of oscillations
is evident at the parametric resonance condition �1=�0 � 2.
The solid lines are the theoretical predictions from (11). The
vertical gray line indicates �0=2� � 2:3 kHz.
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below the parametric resonance condition; see Fig. 3.
Again, there is an excellent agreement between the ob-
served and predicted particle motions. In particular, the
parametric excitation of oscillations manifests as a narrow-
ing of the peak (or a reduced apparent damping �, defined
as the full width at half maximum), occurring when mod-
ulating at twice �0. Close to parametric resonance, a shift
in peak position �p is also apparent. Both of these signa-
tures confirm our interpretation of the system as being a
Brownian parametric oscillator; see Fig. 4.

We recognize that our observations relate to the study of
the lateral motion of the trapped droplets. In keeping with
other work, we note from examination of the video images
that the axial movement of the trapped droplet occurs on
much longer time scales, corresponding to frequencies in
the subkilohertz region. This slow axial dynamics is re-
sponsible for the low frequency component of the spectra
in Fig. 3. This reflects the comparatively weak axial trap-
ping, possibly arising from aberrations associated with
nonoptimized objectives. It may be possible to use dough-

nut or Laguerre-Gaussian beams having zero on-axis in-
tensity and improved axial trapping [21].

We have reported the first observation of a parametri-
cally excited resonance within a Brownian oscillator. The
demonstration of this effect within optical tweezers was
made possible by relying on the low viscosity of air to
lightly damp the motion of a trapped aerosol droplet. The
detailed observed dynamics matches closely the power
spectra predicted from a parametrically modulated
Langevin equation.

We thank S. Ciuchi for many helpful discussions. D. M.
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*roberto.dileonardo@phys.uniroma1.it
[1] C. Van den Broeck and I. Bena, in Stochastic Processes in

Physics, Chemistry and Biology (Springer-Verlag, Berlin,
2000).

[2] L. Ruby, Am. J. Phys. 64, 39 (1996).
[3] J. Bechhoefer and B. Johnson, Am. J. Phys. 64, 1482

(1996).
[4] C. Zerbe, P. Jung, and P. Hänggi, Phys. Rev. E 49, 3626

(1994).
[5] A. F. Izmailov, S. Arnold, S. Holler, and A. S. Myerson,

Phys. Rev. E 52, 1325 (1995).
[6] L. Turner et al. Nature (London) 396, 149 (1998).
[7] D. G. Grier, Nature (London) 424, 810 (2003).
[8] J. Joykutty, V. Mathur, V. Venkataraman, and V. Natarajan,

Phys. Rev. Lett. 95, 193902 (2005).
[9] V. Venkataraman, V. Natarajan, and N. Kumar, Phys. Rev.

Lett. 98, 189803 (2007).
[10] L. Pedersen and H. Flyvbjerg, Phys. Rev. Lett. 98, 189801

(2007).
[11] Y. Deng, N. R. Forde, and J. Bechhoefer, Phys. Rev. Lett.

98, 189802 (2007).
[12] Y. Deng, J. Bechhoefer, and N. R. Forde, J. Opt. A Pure

Appl. Opt. (to be published).
[13] J. Buajarern, L. Mitchem, A. D. Ward, N. Nahler, D.

McGloin, and J. P. Reid J. Chem. Phys. 125, 114506
(2006).

[14] S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943).
[15] J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry

and Physics: Air Pollution to Climate Change (Wiley,
New York, 1997).

[16] M. C. Wang and G. E. Uhlenbeck, Rev. Mod. Phys. 17,
323 (1945).

[17] R. J. Hopkins, L. Mitchem, A. D. Ward, and J. P. Reid,
Phys. Chem. Chem. Phys. 6, 4924 (2004).

[18] D. R. Burnham and D. McGloin, Opt. Express 14, 4175
(2006).

[19] L. Mitchem et al., J. Phys. Chem. A 110, 8116 (2006).
[20] F. Gittes and C. Schmidt, Opt. Lett. 23, 7 (1998).
[21] A. T. O’Neil and M. J. Padgett, Opt. Commun. 193, 45

(2001).

FIG. 4. (a) Peak full width at half maximum as a function of
modulation frequency. The solid lines are the theoretical pre-
dictions from (11). (b) Peak position shift as a function of
modulation frequency. �p0 is the peak position in the absence
of modulation.
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