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The statistical behavior of the domain wall depinning from a notch placed in a thin ferromagnetic wire
is studied by means of a stochastic one-dimensional model which considers the wall as a rigid object
inside a parabolic potential at room temperature. This analysis reveals the key role of thermal fluctuations
on the current and field-induced domain wall depinning, and it allows for direct comparison with
experiments in order to gain information on the nonadiabaticity degree of the spin torque.
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Several logic [1] and storage [2] devices have been
proposed over the last years based on the domain wall
(DW) displacement along thin ferromagnetic wires. The
position of the DW can be manipulated by means of a
notch [3,4] which acts as the local pinning center for the
wall, and the DW depinning can be achieved by means of
large enough external magnetic fields He and/or in-plane
electrical currents ja [5]. The characterization of the DW
depinning process is not only of technological relevance
since it determinates the real operability of future devices
[6–9]; it is also interesting from a fundamental point of
view because, while current-induced DW motion has been
observed experimentally well achieved [10–13], the under-
laying theory of interaction between current and magneti-
zation is still controversial. Some authors [14–17] claim
that if the DW width is larger than a characteristic length,
adiabatic conditions are fulfilled and, consequently, the
spin of conduction electrons becomes fully polarized due
to the local magnetization. The characteristic length to
which the DW width has to be compared is, depending
on the model, the spin diffusion length [18], the Larmor
precession length [19], or the Fermi wavelength [20]. On
the other hand, and motivated by the large discrepancies
between experiments and the perfect adiabatic approach,
other authors have argued that nonadiabatic corrections,
related to the spatial mistraking of spins between conduc-
tion electrons and local magnetization, must be included
for finite wall width [21–23]. Specifically, the relative
importance of the adiabatic and the nonadiabatic spin
torques in determining the DW motion is still the subject
of much debate [6,21,22,24]. In a zero temperature analy-
sis, He et al. [5] predicted that the degree of nonadiaba-
ticity of the spin torque, described by the nonadiabatic
dimensionless parameter �, strongly influences the combi-
nations of fields and currents necessary to depin a DW
initially trapped at a constriction. Since the exact value of
the nonadiabatic parameter is difficult to compute from
first principles, a study of the DW depinning from a notch
as a function of ja and He might help to ascertain the
magnitude of � by direct comparison between experiments

and simulations. Until today current-induced DW depin-
ning from a notch has been observed only in a few experi-
mental works [7–9]. Although there exist theoretical works
focused on the analysis of the DW motion driven by He
and/or ja [16,17,20–22], thermal effects on the DW mo-
tion have not been addressed thoroughly. In particular, in
the experiments done to explore the nonadiabatic limit at
room temperature [7], the critical current for DW depin-
ning is found to decrease linearly with increasing field, and
the depinning time decreases exponentially with increasing
both current and/or field. These observations cannot be
described neglecting thermal fluctuations.

In this Letter, we firstly characterize the pinning poten-
tial generated by a constriction placed on a thin ferromag-
netic wire by means of micromagnetic modeling. Then, the
field and current-induced DW depinning at room tempera-
ture is analyzed by means of a one-dimensional model, and
both perfect adiabatic (� � 0) and nonadiabatic (� > 0)
cases are discussed.

We focus our attention on a thin Permalloy nanowire
with Ly � Lz � 60� 3 nm2 cross section, where two
notches (15 nm long, 6 nm wide) are symmetrically placed
on both edges of the wire [see Fig. 1(a)]. A computational
region of Lx � 2 �m in length, with the notch placed in
the center, was discretized by means of a cubic computa-
tional mesh of �x � 3 nm in size. The inset of Fig. 1(d)
depicts the equilibrium state of the DW at rest. Its response
to the action of magnetic fields (Be � �0He) and/or elec-
trical density currents (ja) instantaneously applied along
the wire axis (x axis) is evaluated by numerically solving
the Landau-Lifshitz-Gilbert equation augmented by the
spin-polarized adiabatic and the nonadiabatic torques as
derived in [21]. Adiabatic and nonadiabatic torques are
proportional to bJ �

ja�BP
eMs

and cJ � �bJ, respectively,

where �B is the Bohr’s magneton, e < 0 is the electric
charge, P is the polarization factor, and � is the dimen-
sionless nonadiabatic parameter. All numerical details of
our micromagnetic code can be found in [25]. Typical
Permalloy parameters are considered: saturation magneti-
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zation Ms�860 kA=m, exchange constant A � 13 pJ=m,
damping � � 0:02, and P � 0:4.

According to the sign criteria of Fig. 1(a), positive fields
and/or currents (electrons flowing in positive x direction)
exert an external force Fe�Be; ja; � > 0� which pushes the
DW to the right (x > 0), where x indicates the DW posi-
tion. For fields or currents below a given threshold (Be �
4:5 mT, or ja � 10 A=�m2, with � � 0:04), the external
force Fe is balanced by the restoring force Fp exerted by
the notch, and the DW reaches a stationary position [x�1�,
elongation] without leaving the notch. The temporal evo-
lution of the DW position [(x�t�] and velocity [v�t�] for
three different triplets (Be; ja; �) are shown in Figs. 1(b)
and 1(c). As observed, and contrary to the field-driven
case, the adiabatic term of the current provides an initial
DW velocity immediately after the application of the cur-
rent [v�0� � � bJ

�1��2�
[16]]. At zero field, the DW position

returns to the initial state [x�1� � 0] after developing
damped oscillations if perfect adiabatic conditions (� �
0) are assumed, whereas a positive elongation [x�1�> 0]
from the center of the notch is found if nonadiabatic
corrections (� > 0) are considered. The stationary DW
elongation x�1� as a function of Be > 0 or ja > 0 in the
pinned regime is depicted in Fig. 1(c) for two different
triplets: Fe�Be; 0;�� (closed symbols), and Fe�0; ja; � �
0:04� (open symbols). These micromagnetic results indi-
cate that the DW elongation increases linearly with the
external force in both cases up to the depinning threshold.
Moreover, the computed spectrum from the Fourier trans-

form of v�t� is shown in Fig. 1(e), corresponding to the
three cases depicted in Fig. 1(c). A single frequency peak
of f�M;N � 2:59 GHz is obtained, pointing out that the
natural frequency is only related to the notch geometry and
independent of the external force.

Based on the former micromagnetic analysis of the
deterministic pinned regime, and in order to develop a
further understanding of the thermally activated DW de-
pinning from the notch, we adopt a well-established one-
dimensional description which treats the DW as a rigid
object inside a parabolic pinning potential. This model,
which was originally introduced to describe the determi-
nistic field-driven motion of DWs [26], has been recently
extended to include spin torque [16,17,20–22] and thermal
effects [25]. Assuming that the DW width remains constant
independently of the field and the current (�0 � 21:14 nm
[27]), and that the tilt angle between the magnetization
with and the easy plane (xy plane) is very small [23], the
linearized one-dimensional DW dynamics is determined
by the Langevin equation (hereafter, 1DM)

 mw
d2x

dt2
� Ff � Fe � Fp�x� � Ft�t�; (1)

where mw � �0LyLz
2�1��2�

�2
0�Nz�Ny��0

is the effective DW mass,

being Ny and Nz the transverse demagnetizing factors [28].
The terms on the right-hand side of Eq. (1) are the different
contributions to the total force acting on the DW. The first
one, Ff � �����0LyLz�

2Ms
�0�0
� KN

�0�Nz�Ny�Ms
	v�t� is the

friction force which is proportional to the DW velocity v �
dx
dt and the damping parameter �. The external driving force
Fe has two contributions, one related to the external mag-
netic field He � Be=�0, and other relative to the applied
current ja, Fe � FH � Fj � ��0LyLz��2MsHe �

2Ms
�0�0

cJ�.
The third term on the right side Fp�x� is the spatially
dependent restoring force derived from the pinning poten-
tial Vpin�x� associated to the notch. Based on the micro-
magnetic characterization discussed above [see Figs. 1(d)
and 1(e)], the pinning force Fp�x� � �

@Vpin

@x can be de-
scribed by means of a parabolic potential given by
Vpin�x� �

1
2KNx

2 if jxj � LN , and Vpin�x� � 0 if jxj>
LN . LN represents the spatial extension of the pinning
potential. The magnitude of the elastic constant of the
notch KN is straightforwardly inferred from the slope of
linear behavior of the elongation as a function of the field-
driven force of Fig. 1(d), which leads to KN �
1:27� 10�4 N=m. The natural frequency of the one-
dimensional free harmonic oscillator is therefore analyti-

cally given by fN �
1

2�

�����
KN
mw

q
� 2:59 GHz, in good agree-

ment with the micromagnetically computed value [see
Fig. 1(e)]. The length of the pinning potential, LN �
16 nm, was computed by fitting the depinning threshold
field obtained micromagnetically. Lastly, thermal fluctua-
tions are included in the formalism by means of a random

FIG. 1 (color online). Micromagnetic results in the pinned
regime. (a) Schematic picture of the geometry dimensions con-
sidered. (b) and (c) depict the temporal evolution of the DW
position and velocity for three different triplets (Be; ja; �).
(d) Terminal elongation of the DW as a function of the field
(Be > 0; ja � 0; �) (closed circles) and as a function of applied
current (Be � 0; ja > 0; � � 0:04) (open circles). The inset
shows the initial equilibrium DW state. (e) Frequency spectrum
corresponding to the characteristic DW oscillations around the
notch.
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thermal force Ft�t� which is a Gaussian-distributed sto-
chastic noise process with zero mean value hFt�t�i � 0,
and uncorrelated in time (white noise) hFt�t�Ft�t0�i �
2D1D��t� t0�. The factor D1D represents the strength of
the thermal force, which can be obtained from the
fluctuation-dissipation theorem [25], D1D �

mw
tR
KBT being

t�1
R �

�
1��2 �0Ms�Nz � Ny� the inverse of the time required

by the system to reach 1=e of its terminal velocity.
Equation (1) is numerically solved by means of a 4th-order
Runge-Kutta scheme imposing an initial velocity of
v�0� � � bJ

�1��2�
[16,25], according to the micromagnetic

simulations.
In Fig. 2, the averaged DW velocity over a temporal

window of tw � 5 �s is shown as a function of (Be, ja, �,
T). Left and right pictures correspond, respectively, to the
perfect adiabatic (� � 0) and nonadiabatic (� � 0:04)
cases. Deterministic results for the temporal average DW
velocity ��v�t�	tw �

1
tw

Rtw
0 v�t�dt� are shown in the top

figures, whereas the bottom ones are computed at T �
300 K by first averaging over n � 5000 realizations
[hvin�t� �

1
n

Pn
i�1 vi�t�], and then averaging over the tem-

poral window ��hvin�t�	tw�. At T � 0, the DW depinning
only occurs if the current and the magnetic field are suffi-
ciently large. On the contrary, at T � 300 K, the problem
is no longer deterministic, and there is a non-null proba-
bility of DW depinning for driving forces smaller than the
deterministic threshold. For � � 0, thermal fluctuations
slightly reduce the deterministic depinning current up to

Be 
 2:1 mT. For larger fields, an abrupt reduction of the
critical depinning current is observed. This behavior is
consistent with recent experimental observations for thick
walls [8,9]. In the nonadiabatic case � � 0:04, thermal
fluctuations significantly promote the DW depinning for
Be > 0, and the critical depinning current decreases line-
arly as the field is increased. Again, our results qualita-
tively explain the experimental measurements of [7],
which were carried out in order to explore the nonadiabatic
case for very thin walls. Once the DW leaves the notch, it
depicts a fluctuating velocity with a mean value corre-
sponding to the deterministic velocity along a free-defects
wire, vD �

1
� ��0�0He � cJ� [25].

In order to obtain further insight into the field and
current-induced DW depinning, the probability distribu-
tions for the terminal DW velocity computed by our sto-
chastic one-dimensional model (1DM) are shown in
Fig. 3(a) for three different values of ja under constant
Be � 0:5 mT � const. The parameters � � 0:04, T �
300 K, and tw � 5 �s are fixed in the rest of the discus-
sion. For ja � 1 A=�m2 the probability depicts a single
peak Gaussian distribution for the DW velocity with zero
mean value indicating that the DW remains pinned at the
notch with 100% of probability. The width of the distribu-
tion is a consequence of thermal fluctuations. For suffi-
ciently high currents (ja � 11 A=�m2), an analogous
distribution is centered at a finite positive DW velocity,
and therefore, the DW is in the viscous regime depinning
from the notch with probability one. For intermediate

FIG. 2 (color online). Phase diagrams for averaged DW ve-
locity (in m=s) as a function of (Be, ja, �, T) computed as
described in the text. The values of � and T are indicated in the
top left corner of each panel.

FIG. 3 (color online). (a) Histograms for the terminal velocity
computed from the stochastic 1DM. Be is fixed to 0.5 mT, and
three values of ja are shown. (b) Temporal evolution of the
pinning probability PP�t� for two pairs of (Be, ja). In (c) and (d)
the 1DM relaxation times trel (closed symbols), and the
Arrhenius fits [30] (dashed lines) are depicted for (0.5 mT, ja)
and (Be; 1 A=�m2 respectively. The 1DM results for the aver-
aged DW velocity �hvin	tw (open symbols) are compared with
the 2SM (solid lines) predictions for both cases. Common
parameters: P � 0:4, � � 0:04, T � 300 K, tw � 5 �s, n �
5000.
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currents (ja � 8 A=�m2), the histogram presents two dif-
ferent peaks: one centered at the zero DW velocity and
another centered at a positive DW velocity value that
corresponds to the free propagation DW velocity. In such
a case, the DW depinning is thermally activated since the
current is below than the deterministic depinning value.
This analysis suggests that the depinning transition can be
described in terms of a two states model (2SM) [29]. The
master equation describing the temporal evolution for
the probability that the DW remains pinned is dPP�t�

dt �

�!PDPP�t�, where PP and PD � 1� PP represent the
probability that the DW remains pinned and depinned,
respectively, and !PD � t�1

rel is the probability per unit of
time of observing a transition from the pinned state (P) to
the depinned one (D). For a given tw, the 2SM provides
expressions for estimating the statistical averaged trajec-
tory hvin�t�, and the time averaged velocity �hvin�t�	tw , if
the relaxation time trel�Be; ja; �; T� is previously known:
hvin�t� � vD�1� et=trel �, and �hvin�t�	tw � vD�1�

trel

tw
�1�

e�tw=trel �	. The trel�Be; ja; �; T� can be deduced by fitting the
1DM results to the 2SM solution �PP�t� � e�!PDt�. An
example of this fitting is shown in Figs. 3(b) for two pairs
of (Be, ja). The same fitting procedure was carried out for
several values of (Be, ja), and it was confirmed that 1DM
results for trel [see closed symbols in both Fig. 3(c) and
3(d)] can be successfully fitted to the Arrhenius empirical
law trel � �0e

Eb=KBT , where �0 represents the characteristic
time constant, and Eb�Be; ja� is the energy barrier between
P andD states [30]. Introducing the expression of trel in the
2SM equation for �hvin�t�	tw (solid lines), we can compare
it with the 1DM results (open symbols) in Figs. 3(c) and
3(d). A good agreement is found in both cases, showing
that the 2SM describes accurately the stochastic nature of
these processes.

In summary, we have presented a stochastic one-
dimensional model which allows to describe thermal ef-
fects on the DW depinning as a function of both the
external field and the applied current. This rigid model
cannot capture complex dynamical processes like the pos-
sible DW distortion or spin waves excitations. It can nei-
ther account for the temperature increase due to the Joule
heating introduced by the electrical current, because the
Langevin formalism is only valid for a fixed temperature of
the thermal bath. However, the stochastic one-dimensional
model appears to describe well the essential physical
mechanisms responsible for the thermal dependence of
the DW depinning. On one hand, the 1DM qualitatively
explains the linear decreasing of the critical current with
increasing the field observed in experiments done to ex-
plore the nonadiabatic regime [7] in thin ferrromagnetic
walls. The exponential decrease of the depinning time with
increasing both current and/or field observed in [7] is also
explained by the 1DM. On the other hand, the stochastic
1DM is also consistent with the depinning current depen-
dence on the field addressed in very recent experiments for

thick walls [8,9], where the adiabatic conditions are as-
sumed to dominate the DW depinning. Thus, once we
characterized the details of the pinning potential for each
particular notch, our method allows us to characterize the
stochastic behavior of the DW depinning process, which,
on one hand, has to be taken into account for future
spintronic applications and, on the other, constitutes a
useful framework to obtain information on the nonadiaba-
ticity degree of the spin torque by direct comparison with
experiments.
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