
Model for 1=f Flux Noise in SQUIDs and Qubits

Roger H. Koch,1 David P. DiVincenzo,1 and John Clarke2

1IBM Research Division, Thomas J. Watson Research Center, Yorktown Heights, New York 10598, USA
2Department of Physics, University of California, Berkeley, California 94720-7300

and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
(Received 22 January 2007; published 27 June 2007)

We propose a model for 1=f flux noise in superconducting devices (f is frequency). The noise is
generated by the magnetic moments of electrons in defect states which they occupy for a wide distribution
of times before escaping. A trapped electron occupies one of the two Kramers-degenerate ground states,
between which the transition rate is negligible at low temperature. As a result, the magnetic moment
orientation is locked. Simulations of the noise produced by randomly oriented defects with a density of
5� 1017 m�2 yield 1=f noise magnitudes in good agreement with experiments.
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The phenomenon of 1=f noise, with spectral density
S�f� scaling inversely with frequency f, is common to vir-
tually all devices. In this Letter, we are concerned with
the origin of 1=f magnetic flux noise in dc SQUIDs
(Superconducting QUantum Interference Devices) and
superconducting flux qubits (quantum bits). In 1983,
Koch et al. [1] identified two separate sources of 1=f
noise in dc SQUIDs: critical-current noise and flux noise.
The 1=f flux noise S1=2

� (1 Hz) was within a factor of 3
of 10 ��0 Hz�1=2 for Nb- or Pb-based SQUIDs at 4.2 K,
even though the areas of the SQUID loops ranged over
6 orders of magnitude; here, � denotes magnetic flux
and �0 � h=2e is the flux quantum. Subsequently,
Wellstood et al. [2] reported values of S1=2

� (1 Hz) of
�4–10� ��0 Hz�1=2 at temperatures below 0.1 K in 12
Nb, Pb, and PbIn SQUIDs. Recently, Yoshihara et al. [3]
measured the decoherence time in Al-based flux qubits at
20 mK and deduced that decoherence was induced by 1=f
flux noise with S1=2

� �1 Hz� � 1 ��0 Hz�1=2. The value of
S1=2

� (1 Hz) in the SQUIDs of Wellstood et al., with areas
up to 2� 105 �m2, is at most 1 order of magnitude higher
than that in these qubits which have an area of about
3 �m2, 5 orders of magnitude less. These results, and those
of Ref. [1], rule out the notion of a ‘‘global magnetic field
noise’’.

Critical-current fluctuations in Josephson junctions are
understood to arise from the trapping and release of elec-
trons in traps in the tunnel barrier [4–6]. In the case of high
transition temperature (Tc) SQUIDs at 77 K, 1=f flux noise
is ascribed to thermal activation of vortices among pinning
sites. This noise can be eliminated by reducing the line-
width to below ��0=B�1=2 [7]; B is the magnetic field in
which the device is cooled. Given that the low-Tc devices
are made of films with a much higher pinning energy, are
operated at much lower temperatures, and may have line-
widths orders of magnitude less than ��0=B�

1=2, vortex
motion is not a viable mechanism for their 1=f flux noise.
Thus, the origin of 1=f flux noise in low-Tc devices has
remained an unsolved puzzle.

In this Letter, we propose a model for 1=f flux noise in
low-Tc devices. Our basic assumption is that the noise is
generated by unpaired electrons that hop on and off defect
centers by thermal activation. The spin of an electron is
locked in direction while the electron occupies a given
trap; this direction varies randomly from trap to trap. The
relevant trapping energies have a broad distribution on the
scale of kBT [8], so that the characteristic times over which
an electron resides on any one defect vary over many
orders of magnitude. The uncorrelated changes of these
spin directions yield a series of random telegraph signals
that sum to a 1=f power spectrum [9]. There are many
candidates for defect centers. In amorphous SiO2, these
include E0 center variants, the nonbridging oxygen hole
center (NBOHC), and the superoxide radical [10]. In addi-
tion, the amorphous oxides of superconductors such as
AlOx and NbOx contain large densities of defects of vari-
ous sorts: for example, the concentration of OH defects in
AlOx can reach several percent [11,12].

One has first to understand how the direction of an
electron spin can remain fixed for very long periods of
time—longer than the inverse of the lowest frequency at
which the 1=f noise is observed, say, 10�4 Hz. Our key
assumption is that an electron randomly adopts a low-
energy spin direction when it arrives at a defect, and that
it remains locked in that orientation during its entire resi-
dence time. If the magnetic field B is zero, Kramers’
theorem [13] guarantees that the ground state is doubly
degenerate, the two states having oppositely directed an-
gular momenta [Fig. 1(a)]. It is well known that scattering
mechanisms that take the electron from one member of the
doublet to the other are extremely weak: the ‘‘Van Vleck
cancellation’’ [14] implies that direct phonon scattering is
forbidden. Higher order processes are allowed, but those
that have been studied are strongly suppressed at low
temperature; for example, the phonon Raman scattering
rate [15] has a temperature dependence of T13.

Of course, the magnetic field is not strictly zero; any
particular defect experiences fluctuating dipole fields from
neighboring defects of the order of 10�4 T (root mean
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square). The magnetic moment vector of the defect M̂ �
�B�L̂� 2Ŝ� can be locked as a result of spin-orbit cou-
pling, making it stable with respect to these field fluctua-
tions. The following model Hamiltonian [16] provides a
good generic description of this locking effect:

 Ĥ �
X

i�x;y;z

Vijpiihpij � �L̂ 	 Ŝ��BB 	 �L̂� 2Ŝ�: (1)

In this model, the unpaired electron occupies a p orbital;
the Vx;y;z are the matrix elements of the crystal-field po-
tential (there will be a preferred coordinate system, varying
randomly from defect to defect, for which the crystal-field
tensor is diagonal, as shown). The spin-orbit coupling
constant � is observed to have a large range of possible
magnitudes for different defects, in the range of [16] 10 K
to 5000 K, but for defects involving atomic weights near
that of silicon, j�j � 300 K is typical [16]. The scale of the

crystal-field parameters Vx;y;z is set by chemical energies,
ranging up to [16]� 2000 K. The orbital angular momen-
tum of simple defects may be ‘‘quenched’’ [17], meaning
that hL̂i � 0 and that the magnetic moment arises only
from the (unlocked) spin angular momentum. Equation (1)
exhibits this behavior if j Vi � Vjj 
 j�j (i � j � x, y,
z). But, it seems quite reasonable that there is a substantial
subpopulation of defects for which j Vi � Vjj � j�j, and
for these Figs. 1(b) and 1(c) show that the direction ofM �
h�0jM̂j�0i for the ground state j�0i is very stable with
respect to variations in the direction of a 10�4-T magnetic
field, being locked to the principal axis of the crystal field.
In defects for which � < 0, L and S are parallel and M is
large, while for the � > 0 defects, M is near zero (i.e., the
anisotropic Landé g factor is near zero) because L and S
are antiparallel; thus, we expect the � < 0 subpopulation to
be most important for flux noise.

Given this picture of the underlying physical processes,
we now calculate the flux noise coupled into a SQUID or
qubit (henceforth succinctly referred to as ‘‘SQUID’’) by a
spatially random distribution of electron spins fluctuating
in orientation. We assume that the defects are randomly
distributed over the substrate, with uniform areal density n.
We consider three regions (inset, Fig. 2): the hole of the
SQUID (‘‘hole noise’’), the region outside the SQUID
(‘‘exterior noise’’), and the loop itself (‘‘loop noise’’)
[18]. For purposes of simulating the coupling between an
electron magnetic moment and the SQUID, we represent
the moment by a small test current loop. The SQUID loop
lies in the plane z � 1 �m, has inner and outer dimensions
of 2d and 2D, and a thickness of 0:1 �m. The current loop
is in the plane z � 0 [‘‘perpendicular (p) moment’’] or in
the x or y plane, centered at z � 0 [‘‘in-plane (i) mo-
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FIG. 2. Magnitude of the flux per Bohr magneton coupled to
SQUID loop by a current loop moved along the line indicated.
‘‘In-plane’’ and ‘‘perpendicular’’ refer to the orientation of the
magnetic moment. SQUID dimensions are 2D � 52 �m and
2d � 41:6 �m. Inset shows configuration of SQUID loop.
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FIG. 1. (a) Properties of the p orbital defect model, Eq. (1).
We take crystal-field parameters Vx � 0, Vy � 400 K, Vz �
2000 K, and spin-orbit coupling � � �600 K. (a) The six
energy levels of the model. The levels do not carry definite
angular momentum quantum numbers, but occur in Kramers-
degenerate pairs, no matter how strong the spin-orbit coupling.
The mixing of the lowest four levels when j�j is comparable to
the crystal-field parameters Vy;z results in a locking of the
magnetic moment direction; this locking is not present if j�j 

Vy;z or if j�j � Vy;z. (b) The idea of locking: even if the applied
field B is at a large angle �B from the principal axis z of the
crystal field, the resultant magnetization vector M lies at a small
angle �M from z. (c) The calculated �M vs �B for jBj � 10�4 T,
300 T, and 1000 T. For a defect with these parameters, locking is
strong for any practical field; it remains strong up to near 1000 T,
when the magnetic energy in Eq. (1) becomes comparable to the
crystal-field and spin-orbit energies. M unlocks as �B passes
through �

2 , rotating rapidly to the opposite direction; however, if
_�B is large enough, this rapid rotation is prevented by Landau-

Zener tunneling between the first and second energy levels.
(d) The anticrossing of these levels near �B � �=2; E

jBj is in
units of �B. The anticrossing gap scales with jBj, so that this
Landau-Zener tunneling will occur readily at low fields.
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ment’’]. The test loop has an effective area A � �0:1 �m�2,
a strip width 0:03 �m, a thickness 0:1 �m, and carries a
current i chosen so that Ai � �B, where �B �
9:27� 10�24 J T�1 is the Bohr magneton (the scale of
the magnetic moment of the defects). For the test loop at
a specified location, we compute its mutual inductances
Mp and Mi with the SQUID loop using the superconduct-
ing version of FastHenry [19]. The flux coupled into the
SQUID for a single electron moment is given by �s �
M�x; y�i � M�x; y��B=A. We calculate the quantity
�s=�B � M�x; y�=A—the flux per Bohr magneton
coupled into the SQUID loop.

In Fig. 2 we plot j�s�x; y�j=�B versus x for y � 0 for the
magnetic moment perpendicular to the plane and in plane.
For the perpendicular moment, j�s�x; y�j=�B has a local
minimum at the center and increases towards either edge of
the superconductor. When the moment is at the midpoint
under (or over) the superconducting film, the coupled flux
is zero as expected from symmetry. The flux coupled into
the SQUID loop from an exterior moment also peaks at the
edges of the superconductor. For the in-plane moment,
j�s�x; y�j=�B peaks at the midpoints of the superconduct-
ing film and falls off rapidly as the moment moves away
from the film. By symmetry, away from the superconduct-
ing region the flux would be zero if the moment and the
SQUID loop were in the same plane. We showed that the
results did not change when the area of the current loop
was varied between 0:1A and 10A.

To obtain the noise due to an ensemble of spins, we
first integrate Mp and Mi over an element dxdy in one
quadrant. We cut off the integration at a distance L �
100 �m beyond the outer edge of the SQUID, where Mp

or Mi is 2 orders of magnitude less than at �0; 0�. For either
case, the total mean square normalized flux noise coupled
into the SQUID, summed over the hole, superconduc-
tor and exterior contributions, is given by h���s�

2i �

8n�2
B

R�L�D�
0 dx

R
x
0 dy�M�x; y�=A

2. The total mean
square noise is h���st�

2i � �h���sp�
2i � h���si;x�

2i �

h���si;y�
2i=3, the angular average of the quadrature sum

of the noise from the three coordinate directions. To
convert h���st�

2i to a spectral density S��f� � �=f,
where � is a constant, we introduce lower and upper cutoff
frequencies, f1 and f2, and set h���st�

2i � �
Rf2
f1
df=f �

� ln�f2=f1�. Taking f1 � 10�4 Hz and f2 � 109 Hz (the
results are only weakly sensitive to these values), we find
S��f�=�2

0 � h���s=�0�
2i=30f.

We obtain noise levels in reasonable agreement with
observations for n � 5� 1017 m�2. This value is 6 orders
of magnitude higher than the value of about 1012 m�2

reported from measurements of two-level systems in
Josephson junctions [11]. However, the two situations are
physically very different. The thickness of the tunnel bar-
rier is 2–3 nm, and the barrier is protected with a metallic
layer immediately after its formation, before it is exposed
to any contaminants. In contrast, the SiO2 layer on a Si

wafer is typically 100 nm thick and, because of its expo-
sure to processing chemicals and the atmosphere, is cov-
ered with contaminants that are likely to be highly
disordered. For a 100-nm thickness, an areal density of 5�
1017 m�2 corresponds to 1 defect in 104 atoms, which does
not seem unreasonable. This areal density is also compa-
rable with estimates of trap densities on silicon surfaces
that have been exposed to atmosphericlike conditions [20].
Furthermore, room temperature scanning tunneling micro-
scope experiments [21] on ultraclean silicon surfaces that
were exposed to a low level of oxygen in an ultrahigh
vacuum system revealed as many as eight near-surface
two-level systems in an area of 4� 10�17 m2 (i.e., a
density of 2� 1017 m�2) in a 10–500 Hz bandwidth,
corresponding to 2� 1018 m�2 over 13 decades of fre-
quency. Thus, our required value of n does not seem
beyond the realm of possibility. We note that the two
SQUIDs with the lowest values of 1=f noise at 1 Hz and
4.2 K, 0:5 ��0 Hz�1=2 [22] and 0:2 ��0 Hz�1=2 [23],
were passivated, and very likely had reduced levels of
surface contamination.

We plot the normalized amplitude spectra of the flux
noise in the SQUID at 1 Hz, S1=2

� �1 Hz�=�0, in Fig. 3.
Figure 3(a) shows the contributions of the hole, loop, and
exterior noises for the perpendicular moments, the loop
noise for the in-plane moments, and the total noise versus
the mean loop size D� d for constant aspect ratio 2d=W.
All the contributions follow the same general trend, in-
creasing by a factor of 4 when the loop area is increased by
a factor of about 200. Figure 3(b) shows the same noise
contributions versus (D� d) for fixed W. As expected, the
hole noise vanishes as the area of the hole vanishes. At
values of (D� d) greater than about 50 �m, the slope
tends asymptotically to 0.5. This result implies that
S��1 Hz� scales with the linear dimension of the SQUID,
that is, with the perimeter rather than the area. Thus, once
the dimensions of the hole exceed the strip width, the noise
is dominated by defects relatively close to or underneath
(or on top of) the superconductor, and the contributions
from the central region of the loop become unimportant.
The total noise ranges from about 0.7 to 2:5 ��0 Hz�1=2

over the range shown.
Figures 3(c) and 3(d) show the dependence of the 1=f

noise generated by the perpendicular moments and one
direction of in-plane moments versus the separation z0

between the current and SQUID loops. For the cases of
perpendicular moments and the in-plane moments under
the superconductor, the noise is independent of z0 for
values below about 3 �m. For the hole and exterior in-
plane moments, as expected, the noise drops off as z0 tends
to zero; we neglect these contributions in calculating the
total noise in Figs. 3(a) and 3(b). Thus, our choice of z0 �
1 �m in our simulations is well justified.

We briefly discuss the possibility that a similar model
based on fluctuating nuclear spins in the superconductor or
substrate could explain flux noise; we emphasize, however,
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that we do not have a model in which nuclear fluctuations
produce a 1=f power spectrum. As an example, we con-
sider a 100-nm thick film of 27Al (6� 1028 nuclei=m3,
magnetic moment 0:0020�B). If we place all these nuclear
spins in a 100-nm thick layer under the film (overestimat-
ing their effect), the spectral density of the noise would be a
factor of 20 lower than for our assumed areal density of
electrons. Furthermore, Wellstood et al. measured the 1=f
noise in SQUIDs with loops made of both Nb (5:6�
1028 nuclei=m3, magnetic moment 0:0034�B) and
207Pb �3:3� 1028 nuclei=m3, abundance 22%, magnetic
moment 0:00032�B), and found that the noise powers at
0.1 K differed by no more than a factor of 4. Scaling the

parameters in our model predicts that the noise power
for Nb would be higher than for Pb by a factor of 850.
As an example for the substrate, we consider 29Si (5�
1028 nuclei=m3, abundance 5%, magnetic moment
0:00030�B). Taking the results from the example in
Fig. 3(c) and 3(d), we assume that the nuclei contribute
to a depth of 10 �m. The resulting noise power is lower
than that for electrons by a factor of 200. Thus, nuclei are
unlikely to be contributors to 1=f flux noise.

In conclusion, our picture unifies the concepts of charge,
critical-current, and flux noise: all three noise sources
originate in the random filling and emptying of charge
traps; flux noise, in addition, involves the concept of spin
locking and the random direction of the magnetic moment
associated with the trapped carrier.
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FIG. 3 (color). Computed flux noise vs loop size D� d for
(a) fixed loop aspect ratio 2d=W � 4 and (b) fixed width W �
20 �m. The jagged behavior in (a) is due to the discrete mesh of
FastHenry. The open triangles in (b) indicate that the accuracy of
the calculations is limited. (c), (d) show the dependence of the
1=f noise vs the separation of the current and SQUID loops for
the perpendicular and one in-plane magnetic moment orienta-
tion. Dimensions: D � 30 �m, d � 20 �m.
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