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In antenna theory, antenna parameters are directly related to the wavelength � of incident radiation, but
this scaling fails at optical frequencies where metals behave as strongly coupled plasmas. In this Letter we
show that antenna designs can be transferred to the optical frequency regime by replacing � by a linearly
scaled effective wavelength �eff � n1 � n2�=�p, with �p being the plasma wavelength and n1, n2 being
coefficients that depend on geometry and material properties. It is assumed that the antenna is made of
linear segments with radii R� �. Optical antennas hold great promise for increasing the efficiency of
photovoltaics, light-emitting devices, and optical sensors.
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In the radio frequency and microwave regimes antennas
are widely employed to convert electromagnetic radiation
into localized energy and vice versa. However, at optical
frequencies, lenses and mirrors are used to redirect the
wave fronts of propagating radiation and the antenna con-
cept is widely unexplored [1]. Consequently, the best
possible localization of optical radiation is governed by
the diffraction limit.

The extension of the antenna concept into the optical
wavelength range has many foreseeable applications, such
as high-resolution microscopy and spectroscopy [2–5],
optical sensors [6,7], photovoltaics [8,9], solid state light-
ing [10,11], and lasing [12]. The development of optical
antennas demands design rules that make it possible to
transfer established antenna designs from the radio wave to
the optical frequency range. Recent theoretical and experi-
mental studies have shown that the resonant length of
optical dipole antennas is considerably shorter than one-
half the wavelength of the incident light [7,12–14]. This is
in contradiction to classical antenna theory and it is the
objective of this Letter to explain and understand this
phenomenon.

Traditional antenna design makes use of structures with
characteristic lengths L that are directly related to the
wavelength � of the incoming (or outgoing) radiation,
i.e., L � const� �, where const is an antenna-design con-
stant. For example, an ideal half-wave dipole antenna is
made of a thin rod of length L � �1=2�� [15]. However, at
optical frequencies the simple wavelength scaling breaks
down because incident radiation is no longer perfectly
reflected from a metal’s surface. Instead, radiation pene-
trates into the metal and gives rise to oscillations of the
free-electron gas. Hence, at optical frequencies an antenna
no longer responds to the external wavelength but to a
shorter effective wavelength �eff which depends on the
material properties. The necessity of replacing � by a
shorter effective wavelength is evident from recent experi-
ments performed at infrared frequencies [16,17]. In these
experiments the resonances of lithographically fabricated
antennas turned out to be 20% shorter than the value
predicted by antenna theory. An effective wavelength has

been arrived at by taking the complex surface impedance
of the metal into account [18]. However, when the length
scales of the antenna (e.g., thickness of wires) become
comparable with the skin depth of the metal the concept
of the surface impedance breaks down and the electromag-
netic response becomes dictated by collective electron
oscillations characteristic of a strongly coupled plasma.
For example, for a half-wave antenna made of a gold rod
(length 110 nm, radius 5 nm) one calculates �eff � �=5:3
(L � �=10:6).

In this Letter we derive a simple linear scaling law for
�eff in the form

 �eff � n1 � n2��=�p	; (1)

where �p is the plasma wavelength and n1, n2 are coef-
ficients with dimensions of length that depend on antenna
geometry and static dielectric properties. The assumptions
are that the antenna is made of linear segments with radius
R� � and that the metal can be described by a free-
electron gas according to the Drude model.

Figure 1 shows the parameters used in our model. We
consider a single antenna segment (rod) with dielectric
function "���, radius R, and total length L. The rod is
embedded in a medium with dielectric constant "s and
wave number ks �

�����
"s
p

2�=� �
�����
"s
p

ko. We argue that an
incident wave with wavelength � polarizes the ends of the
rod thereby giving rise to a surface charge wave propagat-
ing along the rod. According to this picture, the effective
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FIG. 1. A single antenna element represented by a metal rod.
Incident light with wavelength � polarizes the ends and gives
rise to a standing surface charge wave.
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wavelength is calculated as [19]

 �eff � ��ko=�	 � 4R; (2)

where ko � 2�=� is the free-space wave number and � is
the propagation constant of the surface charge wave. The
subtraction of 4R is approximate and originates from the
apparent increase of the antenna length due to the reac-
tance of the rod ends. Equation (2) states that the ratio
�eff=� scales as the ratio ko=�, which is known as the
velocity factor in antenna theory.

To determine � it is necessary to calculate the modes of
a thin metal wire. According to waveguide theory, the TM0

modes of a cylindrical waveguide are solutions of

 

"���
�1R

J1��1R�
J0��1R�

�
"s
�2R

H�1�1 ��2R�

H�1�0 ��2R�
� 0: (3)

Here, Jn are cylindrical Bessel functions and H�1�n are
cylindrical Hankel functions of the first kind. The trans-
verse wave numbers �1 and �2 are defined by the propa-
gation constant � as �1 � ko�"� ��=ko�2	1=2 and
�2 � ko�"s � ��=ko�

2	1=2, respectively. We are interested
in the spectral (dispersive) properties of the antenna re-
sponse and therefore replace the dielectric constant " by its
real part "0 � Ref"g.

For thin wires, Jn andH�1�n can be expanded to first order
in �iR [20] and Eq. (3) reduces to

 

1

��2R�
2 � A

"0

2"s
�

�
2A� 2A2 � 1

4A

�
� 0; (4)

where A��2R� � �� ln�2� � lnj�2Rj and � � 0:577 . . . is
the Euler constant. We now introduce the substitution

 z �

�������������
�

2"s
"0

s
1

ksR
�ks=��

�1� �ks=��
2	1=2

; (5)

which allows us to express Eq. (4) as

 z2 � A�z� �
2"s
"0

�
2A� 2A2 � 1

4A

�
� 0: (6)

For long wavelengths � the dielectric constant " increases
much faster than the expression in brackets. Therefore, we
expand the latter in powers of (z� 1) and obtain to lowest
order
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where Ao � �� �1=2� ln��2"0="s	. The second term in
Eq. (6) can be expanded to second order in (z� 1) and
becomes A�z� 
 Ao � ��z� 1� � �1=2��z� 1�2	. Equa-
tion (6) can now be solved for z and yields

 z���� 2
3�
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3

������������������������������������������������������������������������������
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q

: (8)

To proceed, we consider a rod characterized by a free-
electron gas according to the Drude formula

 "0��� � "1 � �2=�2
p: (9)

Here, "1 � "0��! 0� is the infinite frequency limit of the
dielectric function, and �p is the plasma wavelength. For
gold "1 
 11, �p 
 138 nm, and for silver "1 
 3:5,
�p 
 135 nm. After inserting "0 defined in Eq. (9) into
Eq. (8) we expand z��� into a series around ���p�"1�
�"s=2�exp�2��	1=2, where ���5=3�2��. After a few ar-
rangements and approximations we find
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We have suppressed higher order terms in � because they
are negligibly small.

The solution for z��� can be inserted into Eq. (5) which
yields the solution
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The effective wavelength is now calculated as

 �eff �
������
"s
p

�������������������������������������������������
4�2"s�R2=�2�~z���2

1� 4�2"s�R2=�2�~z���2

s
� 4R; (12)

where ~z��� is defined by Eq. (10). This equation represents
a straightforward wavelength scaling and is the main result
of this Letter. For a perfectly conducting material of neg-
ligible thickness (R! 0) we obtain �eff � �, in agreement
with antenna theory. The expression defined by the square

root scales as a� b=�, with a and b being coefficients that
depend on R and material parameters. We thus recover the
simple linear relationship stated earlier in Eq. (1).

The linear wavelength scaling is also reproduced by
numerically solving Eq. (3) and using experimental data
for the dielectric function "���. Figure 2 shows the results
for different rod radii R and for different materials. The
linear relationship between � and �eff is evident in all
cases. Because of interband transitions one observes a
slight deviation near � 
 500 nm for gold and near � 

800 nm for aluminum.

For sufficiently small R the square root in Eq. (12) can
be expanded using

��������������������
x=�1� x�

p



���
x
p

and yields

 �eff � 2�R�a1 � a2�=�p� � 4R; (13)

where a1 and a2 were defined in Eq. (10). Numerical
evaluation of a1 and a2 leads to
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which defines the coefficients n1 and n2 introduced in
Eq. (1). Thus, the effective wavelength follows from a
simple linear scaling of the free-space wavelength �.

In order to test the developed theory we numerically
analyzed two types of optical antennas: a half-wave dipole
antenna and a 3-element Yagi-Uda antenna [15]. The cal-
culations were performed using the semianalytical
multiple-multipole (MMP) method [21]. Figure 3(a) shows
the spectral response of a half-wave dipole antenna made
of a single aluminum rod of length L � 110 nm and radius
R � 5 nm. The spectrum has a peak at � � 640 nm.
According to the wavelength scaling rule in Eq. (14)
(cf. Fig. 2), an effective wavelength of �eff � 2L �
220 nm corresponds to an incident wavelength of � �

650 nm which agrees well with the peak position of the
spectrum. A half-wave dipole antenna with the same geo-
metrical parameters but made of gold has a computed
resonance at � � 1170 nm which again agrees very well
with the value predicted by Eq. (14). Notice that at the
resonance wavelength the near-field intensity evaluated at
the ends of the rod assumes its maximum value [Figs. 3(b)
and 3(c)].

It is important to stress that a traditional half-wave
dipole antenna consists of two segments of length �=4
separated by a tiny feedgap. The feedgap is connected to
an impedance-matched transmission line (Z
73� i42 �)
and supplies the antenna with current. However, the per-
turbation introduced by the feedgap is essentially elimi-
nated by impedance matching and hence, an impedance-
matched half-wave dipole antenna is analogous to a single
metal rod as considered in this example. Two aligned and
closely spaced antenna segments of length �=4 would rep-
resent a strongly mismatched half-wave dipole antenna [7].

The induced current density inside the half-wave
antennas considered in Fig. 3 is calculated as j �
�i!"o�"�!� � 1	E, where E is the local electric field.
We find that the current density is described by j�z� /
cos�z�=�L� 2R�	, in agreement with the offset introduced
in Eq. (2). The current is nearly 180� out of phase with
respect to the exciting field. If we interpret the induced
current as a source current we obtain a transmitting half-
wave dipole antenna whose radiation resistance is cal-
culated as Rrad � 2Prad=I2

o, where Prad is the radiated
power and Io � �R2jjoj is the source current. For both
the gold and aluminum half-wave antennas we calculate
Rrad 
 3�.
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FIG. 3 (color online). Spectral response of aluminum and gold
half-wave dipole antennas (L�110 nm, R�5 nm). (a) Scatter-
ing cross section of an aluminum rod (dashed curve) and a gold
rod (solid curve). (b), (c) Imaginary and real parts of the electric
field enhancement evaluated at the poles of the gold rod. The
secondary peaks at � � 940 nm (aluminum) and � � 595 nm
(gold) arise from intraband transitions.
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FIG. 2 (color online). Effective wavelength for metal rods
made of silver, gold, and aluminum. The curves are calculated
according to �eff � ��ko=�� � 4R, where R is the wire radius
and (ko=�) is determined numerically according to Eq. (3).
Experimental values for "��� are used [25,26]. The rods are
surrounded by vacuum ("s � 1). The numbers in the figures
indicate the radius R in nanometers.
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Gold nanorods have been synthesized by colloidal
chemistry by various groups and aspect ratios larger than
10:1 have been reported [22]. Let us consider a gold nano-
rod with R � 5 nm and aspect ratio 8:1 (L � 80 nm)
suspended in a solution with "s � 1:72 (H2O). The funda-
mental resonance is then expected to be found for �eff �
2L � 160 nm. According to Eq. (13) this value corre-
sponds to a wavelength of � 
 1180 nm, which agrees
with the measurements by Yu et al. [22]. Monopole anten-
nas exhibiting a �=4 resonance have been recently inves-
tigated by Taminiau et al. [4]. For a R � 20 nm aluminum
rod excited with � � 514 nm the resonance length was
found to be L 
 75 nm, from which one derives �eff 

300 nm. The value derived from our theory is slightly
larger (�eff � 320 nm) which can be attributed to the
fact that L 6<4R and that the antenna considered by
Taminiau et al. is not located above perfectly conducting
ground.

The here developed wavelength scaling can be applied
to more complex antenna designs, such as antennas with
parasitic elements, self-scaling antennas, or phased arrays.
In Fig. 4 we consider a simple 3-element optical Yagi-Uda
antenna made of a driven antenna segment (center) and two
parasitic antenna segments of equal lengths. The driven
element (L � 110 nm, R � 5 nm) is fed by an impedance-
matched source current with frequency f � c=�, where c
is the vacuum speed of light and � � 1150 nm. The phase
of the induced currents in the parasitic elements can be
influenced by the length of the elements and by their
spacing. In the simple example shown in Fig. 4 the para-
sitic elements increase the overall antenna efficiency by
65%; i.e., for the same source current the emitted power
increases by a factor of 1.65. The Yagi-Uda antenna can be
optimized for efficiency and directivity by calculating the
mutual impedances between pairs of antenna segments and
using established design rules [15,23].

In summary, we have derived a linear wavelength scal-
ing rule which makes it possible to downscale established
antenna designs into the optical frequency regime. Optical

antenna design can be further guided by use of the
‘‘lumped circuit’’ concept introduced recently by
Engheta et al. [24]. Optical antennas are likely to be
employed for boosting the efficiency of light-matter inter-
actions in a wide range of settings, such as photovoltaics
and light-emitting devices.
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FIG. 4 (color online). Field distribution near a 3-element opti-
cal Yagi-Uda antenna consisting of a driven center element (� �
1150 nm) and two parasitic elements of equal lengths (E2, factor
of 2 between adjacent contour lines). The parasitic elements
increase the antenna efficiency by 65%.
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