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We construct a chiral gauge theory to describe fractionalization of fermions in graphene. Thereby we
extend a recently proposed model, which relies on vortex formation. Our chiral gauge fields provide
dynamics for the vortices and also couple to the fermions.
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Introduction.—In some condensed matter systems the
electron excitation spectrum near the Fermi surface can be
described by a Dirac-type matrix equation. This equation
does not arise from relativistic considerations, but rather by
linearizing the energy dispersion near (a finite number of)
Dirac points (intersections of the energy dispersion with
the Fermi level). Such systems can exhibit fermion frac-
tionalization if the Dirac equation possesses isolated bound
states in the gap between negative-energy (valence band)
states and positive-energy (conduction band) states.

A familiar example is one-dimensional polyacetylene
[1]. As is generally the case in one dimension, there are two
Dirac points for polyacetylene. Therefore a two-
component Dirac equation governs electron motion near
each Dirac point. A distortion of the underlying lattice
(Peierls’ instability) perturbes the electron motion in a
way that couples the two Dirac points and opens a gap in
the energy spectrum. In the Dirac equation description this
is achieved by coupling the Dirac field � to a scalar field
’, which is a measure of the lattice distortion. ’ enjoys a
Z2 symmetry with two ground states in which it takes
homogenous values �’0. This coupling to ’0 leads to a
Dirac mass / j’0j. But ’ can also take a position-
dependent kink profile (soliton) ’s that interpolates be-
tween the two vacua �’0. This ‘‘twisting’’ of the mass
parameter describes a defect in the lattice distortion. The
Dirac equation with the kink profile ’s replacing the
homogenous�’0 possesses a single midgap (zero-energy)
eigenstate. This gives rise to a fractional fermion number
for the electrons: 1=2 per spin degree of freedom [1].

Recently a similar story has been told by Hou, Chamon,
and Mudry [2] (HCM) about (monolayer) graphene. This is
a two-dimensional honeycomb array of carbon atoms
forming a hexagonal lattice, which may be viewed as a
superposition of two triangular sublattices, A and B. The
generators of lattice A are a1 and a2. The three vectors si
connect any site from lattice A to its nearest neighbor sites
belonging to B. They are
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where ‘ is the lattice spacing; see Fig. 1.

When no lattice distortion is considered, the tight-
binding Hamiltonian, with uniform hopping constant t, is
taken as

 H0 � �t
X
r�A

X
i�1;2;3

�ay�r�b�r� si� � by�r� si�a�r��; (2)

where the fermion operators a and b act on sublattices A
and B. H0 is diagonal in momentum space.
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The single-particle energy spectrum E�k� � � j ��k� j
contains two zero-energy Dirac points at

 k � K� � �
�
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This parallels the one-dimensional case, but is rare in two
dimensions [3].
H0 is linearized around the two Dirac points, k � K� �

p, and is supplemented by a term arising from a (Kekulé)
distortion of the lattice, which couples the two Fermi

FIG. 1. Graphene hexagonal lattice constructed as a superpo-
sition of two triangular lattices A and B, with basis vectors ai for
lattice A and vectors si connecting A to B.
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points.
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�� is the linearization of �: ���p� � �vF�px � ipy�,
vF � 3t‘=2 (henceforth vF is set to unity), and a�, b�
are fermion operators near the Dirac points: a��p� �
a�K� � p�, b��p� � b�K� � p�. In the second sum 40

is a homogenous, but complex order parameter, which
effects the coupling between the Fermi points K� and
leads to a mass gap in the single-particle energy dispersion:

��p� � �
�������������������������
p2 � j 40 j

2
p

.
To find zero modes for this system, HCM promote the

mixing parameter 40 to an inhomogenous complex func-
tion 4 with a vortex profile. To this end, the Hamiltonian
(5) is presented in coordinate space as

 H �
Z
d2r�
�r�K��r�; (6)

where ��r� is a four-component ‘‘spinor’’
 

� �

 b�
 a�
 a�
 b�

0
BBBBB@

1
CCCCCA

with  a��r� �
Z
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Z
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and K is the 4� 4 matrix
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with �2i@z �
1
i �@x � i@y�.

HCM take 4�r� in the n-vortex form: 4�r�ein� where n
is an integer, 4�r� vanishes as rjnj for small r, and ap-
proaches the mass-generating value 40 at large r. They
then establish the occurrence of jnj zero modes, i.e., solu-
tions to K� � 0, on lattice A (B) for negative (positive) n,
and they construct explicitly the solution for n � �1.
Therefore, fermion number /

R
d2r�
� is fractionalized.

Chiral gauge theory for graphene.—In this Letter we
elaborate the HCM model, and address the following two
topics. HCM leave unspecified the dynamics that gives rise
to the complex vortex profile. To remedy this, we first

propose identifying the HCM vortex with the Nielsen-
Olesen–Landau-Ginsburg-Abrikosov (NO-LGA) vortex,
which is described by a charged scalar field, as in the
HCM model. However an U�1� gauge field is also involved
in creating a finite-energy NO-LGA vortex, but no gauge
field is present in the HCM model. Therefore, secondly,
we propose introducing a relevant gauge potential and
coupling it to the Dirac fermions in a chiral manner. This
expands the symmetry of the interaction to the kinetic
term, and renders the theory invariant against local,
chiral U�1� gauge transformations, which also act on the
scalar and Dirac fields. Additionally, there remains a
global fermion number U�1� symmetry, and its charge is
fractionalized.

To present our extension of the HCM model, we shall
use Dirac matrix notation. We begin by rewriting K in (7)
in terms of Dirac matrices whose forms we take as follows:

 � � ��1; �2; �3� �
� 0
0 ��

� �
; � �

0 I
I 0

� �
:

Note: we use 4� 4 Dirac matrices, even though the mini-
mal Dirac algebra in 2� 1 dimensions requires only 2� 2
matrices. But we have 4 degrees of freedom: two each in
lattices A and B. Since there are two spatial dimensions, we
use only the first two �matrices: �i, i � 1, 2 or x, y; while
the role of the third one, �3, will emerge later. Also unlike
with minimal 2� 2 Dirac matrices, here we can construct
the chiral �5 matrix, as the Hermitian quantity

 �5 � �i�
1�2�3 �

I 0
0 �I

� �
; �2

5 � I:

The � matrices read

 � � ���
0 ��
� 0

� �
; �0 � �; �5 � i�0�1�2�3:

Note that the �i (i � 1, 2, 3) anticommute among them-
selves and with �; �5 commutes with the �i and anticom-
mutes with �.

With these matrices K in (7) may be presented as

 �
K� � �
�� 	 p� g��’r � i’i�5���: (8)

(Henceforth all vectorial quantities are two dimensional.)
Here p is the operator �ir; we have renamed 4 as g’,
where g is a coupling strength and ’ is a complex scalar
field, with real and imaginary parts: ’ � ’r � i’i. Note
that when ’ is decomposed into modulus and phase: ’ �
j’jei	, the interaction part of (8) may be presented as
gj’j�
�e�i�5	�. This makes it clear that this interaction
is invariant against a local chiral gauge transformation.

 ’! e2i!’) 	! 	� 2!; �! ei!�5 �: (9)

[When ’ � ’0 is constant, its constant phase may be
removed from K by the above transformation, leaving a
conventional Dirac mass term (gap) / j’0j.]
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In order that the kinetic portion of (8) be invariant
against the local gauge transformation (9), we introduce
coupling to a gauge potential A, which transforms as

 A ! A� r!: (10)

Thus our final Dirac Hamiltonian density reads
 

�
KA� � �
� 	 �p� �5A��� g�
��’r � i�5’i��

� ���� 	 �p�A��� � ���� 	 �p�A���

� g’ ����� � g’
 �����: (11)

We have introduced the Dirac adjoint �� � �
�0, and the
chiral components �� �

1
2 �1� �5��, whose gauge trans-

formation law is

 �� ! e�i!��; ��� ! ���e
i!: (12)

The Bose fields ’ and A are determined by the familiar
NO-LGA equations.

 D 	 D’ � ’V 0�’
’�; D’ � �r� i2A�’; (13)

 

1

e2
"ij@jB � jiBOSE; (14)

 B � "ij@iAj;

 j BOSE � 4Im’
D’:

Here e is a further coupling constant and V is chosen so
that at minimum V0 � 0, ’
’ � ’2

0, which gives rise to
the Dirac mass for � / j’0j. Furthermore, vortex solutions
to these equations also exist. Their form is

 ’v�r� � ’�r�ein�; Aiv�r� � �n"ij
rj

r2 a�r�; (15)

where n is an integer; ’�r� vanishes with r as rjnj and tends
to ’0 at infinity; a�r� vanishes at the origin so that Av is
regular there, and a�r� tends to 1=2 at large r. All this
ensures finiteness of the vortex energy

R
d2r� 1

2e2 B2 �

jD’j2 � V�’
’��.
Finally, note that our system possesses a global fermion

number symmetry, with just the Fermi fields transforming
with a constant phase: �! ei
�. Consequently the the-
ory possesses a local chiral U�1� symmetry and a global
U�1� fermion number symmetry. Because the theory re-
sides in 2� 1 dimensions, no chiral anomalies interfere
with our chiral gauge symmetry.

Indeed, in spite of the presence of the �5 matrix, the
theory is parity (P) and charge-conjugation (C) invariant
and the axial vector current is C odd. This is because in
(2� 1) dimension, with 4-component Dirac fields, the
relevant transformations read

 

P: ’�t; x; y� ! ’�t;�x; y�;

A0;y�t; x; y� ! A0;y�t;�x; y�;

Ax�t; x; y� ! �Ax�t;�x; y�;

��t; x; y� ! i�3�1��t;�x; y�;

(16)

 C: ’! ’
 A! �A �i ! �1
ij

��j; (17)

It follows that time reversal symmetry holds also.
Modified Dirac equation.—With the additional gauge

potential A, our Dirac eigenvalue problem differs from
HCM. According to (11) we have

 �� 	 �p� �5A� � g��’r � i�5’i��� � E�: (18)

Observe that �3, which we rename R, anticommutes with
the matrix structure on the left side of (18). Therefore if �E
is an eigenfunction with eigenvalue E, R�E belongs to
eigenvalue �E, and zero modes can be chosen as eigen-
states of R. This is a consequence of the ‘‘sublattice
symmetry’’ identified by HCM.

Next we show that the gauge interaction in (18) does not
affect the zero modes found by HCM without A. To this
end, we adopt the Coulomb gauge and present A as Ai �
"ij@jA. Also it is true that �i�5 � �i"ij�jR�i � 1; 2�.
Consequently, the kinetic term in (18) can be written as
e�AR� 	 pe�AR, and (18) becomes

 �� 	 p� g��’r � i�5’i���e�AR�� � E�eAR��: (19)

Thus e�AR� satisfies the HCM equation at E � 0.
Comparison with (15) shows that A0�r� � �na�r�=r, so
that at infinity A�r� tends to � n

2 lnr, and the zero modes
with the gauge interaction differ at large r from the HCM
modes by factors r��n=2�. This does not affect nomalizabil-
ity because the zero modes found by HCM are exponen-
tially damped by the interaction with ’v. Finally, since the
n � �1 HCM mode as well as ours has the form,

 �0 �

0
v
v
0

0
BBB@

1
CCCA;

where v is an exponentially damped function, we see that
indeed �0 is an R eigenstate, with eigenvalue�1. Fermion
number fractionalization in the gauge theory is now estab-
lished by the same reasoning as in HCM.

Energy relations.—The total energy functional for all
our fields is

 ETOTAL �
Z
d2r

�
1

2e2 B
2 � jD’j2 � V�’
’�

�

�
Z
d2r�
KA�: (20)

Varying this with respect to �
 produces our Dirac Eq. (18)
at zero eigenvalue. Varying with respect to the Bose fields
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’
 and A derives (13) and (14), but with a back reaction
from the Dirac fields.

 D 	D’ � ’V0�’
’� �
g
2

���1� �5��; (21)

 

1

e2
"ij@jB � jiBOSE �

���i�5�: (22)

However, with a zero mode that is an eigenstate of R, the
back reaction Dirac bilinears vanish. Thus our Dirac zero
mode, together with the scalar field or gauge field NO-
LGA vortex, is a self-consistent solution of the coupled
system.

Chiral gauge theories have previously entered physics,
but in even-dimensional space-time, where the chiral
anomaly influences the structure and physical utility of
these models [4]. In the present work, we have a chiral
gauge theory in odd-dimensional space-time, whose struc-
ture is mathematically very elegant owing to its self-
consistent solutions. It remains to be determined whether

a microscopic description for graphene can lead to the
chiral gauge field that enters our theory.
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