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Predicting the shape of a critical nucleus in solids has been a long-standing problem in solid-state phase
transformations. We show that a diffuse-interface approach together with a minimax algorithm is able to
predict the critical nucleus morphology in elastically anisotropic solids without a priori assumptions. We
demonstrate the possibility of nonconvex surfaces for critical nuclei. It is found that strong elastic energy
contributions may lead to critical nuclei whose point group symmetry is below the crystalline symmetries
of both the new and the parent phases.
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Nucleation is perhaps the most common physical phe-
nomenon in nature. It takes place when a material becomes
metastable with respect to its transformation to a new state
(solid, liquid, and gas) or new crystal structure. Much of
our current understanding of nucleation owes to the clas-
sical nucleation theories developed in 1930s. Early nuclea-
tion theories mostly considered phase changes in fluids,
e.g., a liquid droplet in a vapor phase, and naturally
assumed spherical shapes for the critical nuclei. The ther-
modynamic properties of a nucleus are assumed to be the
same as in the corresponding bulk. The size of a critical
nucleus is then determined as a result of bulk free energy
reduction and interfacial energy increase r � �2�=�G�,
where � is the interfacial energy per unit area between a
nucleus and the parent matrix, and �G� is the free energy
driving force per unit volume. Despite the assumption of
spherical shapes for critical nuclei, the same classical
theories have been utilized to interpret kinetics of many
phase transformations involving solids including solid to
solid transformations. For some systems, the classical nu-
cleation theory has been shown to provide a good descrip-
tion of the nucleation kinetics.

It has long been recognized that, in general, nucleation
in solids can be significantly more complicated than that in
fluids. First of all, due to the crystallographic nature of
most solids, the interfacial energy between a nucleus and
the matrix is generally anisotropic, and thus the minimum
surface shape is nonspherical. Second, the lattice parame-
ters of a new phase and the corresponding parent are
typically different, so elastic energy is generated during
nucleation to accommodate the lattice mismatch between a
nucleus and the matrix. The shape of a critical nucleus in
the presence of interfacial energy anisotropy alone can be
deduced from the well-known Wulff construction. How-
ever, predicting the shape of a critical nucleus in the

presence of both elastic energy and surface energy anisot-
ropy is particularly challenging, since elastic energy con-
tribution depends on the morphology of a nucleus and
lattice mismatch between the nucleus and the matrix.

Prior applications of classical nucleation theory to solid-
state transformations typically assume the shape of a nu-
cleus as an a priori and include the elastic energy contri-
bution to nucleation as an extra nucleation barrier, i.e., the
size of a nucleus a� � ������f� � Ee��1, where �� is a
numerical factor depending on the shape of the nucleus,
�f� is the bulk driving force for nucleation, and Ee is the
elastic strain energy contribution to nucleation on the order
of C�2

0, where C is the elastic modulus and �0 is the lattice
mismatch strain (transformation strain, eigenstrain, stress-
free strain) between the nucleus and matrix. For example,
Brenner, Iordanskii, and Marchenko [1] studied the ki-
netics of nucleation and growth of a new phase in a solid.
They assumed an oblate shape of nuclei, which reduces the
elastic energy arising from the lattice accommodation
between the new phase and matrix.

In this Letter, we propose a nonclassical approach to
nucleation in solids by integrating a diffuse-interface
phase-field description [2] and a minimax variational ap-
proach [3]. It is then applied to predict the critical nucleus
morphology in the presence of anisotropic interfacial en-
ergy and/or anisotropic elastic interactions. Our focus here
is on the nucleus morphology rather than the nucleation
rate or kinetics. This problem is quite different from the
saddle-point search when a solid is homogeneously trans-
formed to a new phase throughout the system, described by
a homogeneous free energy as a function of a homoge-
neous order parameter.

Following the seminal work by Cahn and Hilliard [4],
the nonclassical theory has been previously applied to
nucleation in solids; for example, Roy et al. [5] discussed
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the nucleation in the presence of a general long-range
interaction, focusing on the critical order parameter pro-
files rather than predicting the morphology of a nucleus.
Wang and Khachaturyan [6] examined the morphology of
nuclei during a martensitic transformation by switching on
and off Langevin noise, and the particles obtained using
this approach do not necessarily correspond to saddle-point
configurations associated with a critical nucleus. Poduri
and Chen [7] studied the nucleation of an ordered precipi-
tate from a disordered matrix by extending the diffuse-
interface theory of Cahn and Hilliard. Chu et al. [8] ex-
plored the nucleation of martensites using a diffuse-
interface phase model. More recently, Gagne et al. [9]
studied the morphological evolution using Langevin simu-
lations of martensitic transformations in two dimensions.
They concluded that systems with long-range interactions
quenched into a metastable state near the pseudospinodal
exhibit nucleation that is qualitatively different from the
classical nucleation near the coexistence curve. It is noted
that all existing diffuse-interface theories for nucleation in
solids ignore the anisotropic interfacial energy and aniso-
tropic long-range elastic interactions.

Without loss of generality, we consider a structural
transition with no compositional changes. We assume
that the structural difference between the parent phase
and the nucleating phase can be sufficiently described by
a single order parameter �. At a given temperature, the free
energy dependence on � is described by a double-well
potential f��� � ��2=2� �4=4� �h��� with wells at
� � �1, h��� � �3�� �3�=2 so that 2� determines the
well depth difference, i.e., the bulk free energy driving

force for phase transformation from the � � �1 state to
the � � 1 state.

The total free energy of an inhomogeneous system
described by a spatial distribution of � is given by

 E �
Z

�

�
f��� �

�
2
jr�j2

�
dx;

where the gradient energy coefficient � is a constant in �
for isotropic interfacial energy. For illustration, we take
� � ��1; 1�d in this Letter with d being the space
dimension.

If the interfacial energy is anisotropic, as usually is the
case for nucleation in solids, either the gradient energy
coefficient can be expressed as a second or higher order
derivative or, rather artificially but common in the phase-
field models, it is made directionally dependent. To incor-
porate the effect of long-range elastic interactions on the
morphology of a critical nucleus, and thus the nucleation
barrier, the computation of the elastic energy Ee is needed
for any arbitrary distribution of �. We hereby assume
that the elastic modulus is anisotropic but homogeneous,
so we may employ the microscopic elasticity theory of
Khachaturyan [10]. For a cubic crystal,

 Ee �
1

2�2��d
Z

�̂
dkB�n�j�̂�k�j2; (1)

which is over the reciprocal space �̂ of the reciprocal
lattice vector k, n � k=jkj � �n1; n2; n3� is the normal-
ized unit vector, and, in three dimensions,

 B�n� � 3�c11 � 2c12��
2
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where c11, c12, and c44 are the elastic constants in the Voigt
notation, �0 is the lattice mismatch between the nucleating
new cubic phase and the parent cubic phase, 	 � �c11 �
c12 � 2c44�=c44 is the elastic anisotropic factor, and s�n� �
n2

1n
2
2 � n

2
1n

2
3 � n

2
2n

2
3.

Taking into account the long-range elastic interactions
and surface energy anisotropy, the increase in the total free
energy arising from the order parameter fluctuation in an
initially homogeneous state with �0 is given by
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Z
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�
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�
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where 
f��� � f��� � f��0� and Ee is given by (1).
Rather than varying the magnitudes of lattice mismatch
and elastic constants, we use a factor � to study the effect
of the relative elastic energy contribution to the chemical
driving force on the critical nucleus morphology.

Since nucleation takes place by overcoming the mini-
mum energy barrier, a critical nucleus is defined as the
spatial order parameter fluctuation which has the minimum

free energy increase among all fluctuations which lead to
nucleation. Therefore, we may find the critical nucleus by
computing the saddle point of the energy functional, of the
order parameter �, that has the highest energy in the
minimum action path. This is consistent with the large
derivation theory, which states that the most probable
path (that minimizes the action [11]) passes through the
saddle point in the large time limit. The usual calculus of
variation can be used to derive the Euler-Lagrange equa-
tion for the saddle point:

 �x
@2�

@2x
� �y

@2�

@2y
�

@
@�


f��� �
�

�2��d

�
Z

�̂
B�n��̂�k�eik�xdk:

In this Letter, we work with periodic boundary conditions
so that Fourier spectral methods can be utilized [2].
Solutions to the above equation lead to all critical points
in the energy landscape, including the saddle-point order
parameter profiles.
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There are various approaches for solving variational
problems numerically. While the most notable ones are
for finding minimizers, algorithms have also been devel-
oped to find minimum energy paths and to search for
saddle points [12]. In this work, to ensure the robust
solution of a saddle point, we employ an algorithm based
on the mountain pass theorem, which adopts the minimax
technique that has been studied extensively in calculus of
variation and optimization [3,13].

The key of the minimax algorithm is to construct a
solution submanifold M so that a local minimum point
of �Etotal on M yields a saddle point. To ensure stability
and monotonicity, a steepest descent search is applied to
approximate a local minimizer on M. Meanwhile, to
guarantee the convergence of the algorithm, it is imperative
to use a return rule to prevent the descent search from
leaving the submanifold. We follow the approach studied
by Li and Zhou [14] which is outlined below: (1) For k �
0, take a direction �0 at a local minimum �0, M0 � f�0 �
spanf�0gg, and search for a local maximum wk :�
arg maxuM0

�Etotal�u�. (2) For k  0, compute the gradient
gk of �Etotal at wk. If k gk k is less than some tolerance,
stop and output wk as a critical nucleus; otherwise, go to
step 3. (3) For Mk�1

b � f�k � spanf�kbgg, with �kb being the
unit vector in the direction of �k � bgk and b in �0; b̂k�,
solve p��kb� :� arg maxuMk�1

b
�Etotal�u�. Then solve b� :�

arg min0<b<b̂k
�Etotal	p��kb�
, set �k�1 � �kb� , wk�1 �

p��k�1�, update k by k� 1, and go to step 2.
For efficiency, a tanh function is taken as the initial

search direction in step 1. In step 2, the number b̂k is
used to control the step size of the steepest descent search
to enhance the stability of the algorithm. An inner product
given by the integral of the product of the functions and
their gradients is adopted to define the variational gradient
gk, which is again efficiently computed via the Fourier
spectral method.

We now present examples of predicted critical nucleus
morphologies in cubically anisotropic systems. The simu-
lations were performed on a two-dimensional 1282 grid
which was verified to give well-resolved numerical results.

We first consider the case of interfacial energy anisot-
ropy with � � 0 in �Etotal. Figure 1 shows critical order
parameter profiles without and with interfacial energy
anisotropy (�y=�x � 1 or 3, in the 1st row). The predicted
anisotropic profile correctly displays the ellipsoidal direc-
tion dependence as one would expect from the interfacial
energy anisotropy. Note that, although for a given interfa-
cial energy anisotropy the shape can be determined from
the Wulff construction, the proposed diffuse-interface ap-
proach is able to predict both the size and the shape of a
critical nucleus simultaneously.

Examples of predicted critical profiles in the presence of
long-range elastic interactions are also shown in Fig. 1
(2nd row) for � � 0:2, 0.8, and 1.2, respectively. Here
�0 � �1, �x � �y � 4� 10�4, � � 0:05, c11 � 250,
c12 � 150, c44 � 100, and �0 � 0:01. We see that long-

range elastic interactions can dramatically change the criti-
cal nucleus morphology. A strong elastic interaction may
lead to critical nuclei with cuboidal, platelike, or even
nonconvex shapes (for � � 0:8). It is emphasized that,
although there have been extensive theoretical studies of
particle morphologies during growth or coarsening by
minimizing the total interfacial and elastic strain energy
[15–18], the present work provides a new approach to
predict the morphologies of saddle-point critical nuclei
without any a priori assumptions on the shapes.

To determine the most probable nucleus morphology for
a given relative elastic energy and chemical driving force
contributions, we plot in Fig. 2 the formation energy of a
critical nucleus for different � with c11 � 250, c12 � 150,
c44 � 200, but with the same �0, �, � as in Fig. 1. Here the
insets contain the contour plots of a number of nucleus
profiles as � changes, illustrating the change in the critical
nucleus morphology; the small squares and circles are data
points based on the computed critical order parameter
profiles, and the solid curves are least square fits by cubic

FIG. 1 (color online). Critical nuclei with �y=�x � 1 or 3 and
� � 0 and cubically anisotropic nuclei with � � 0:2, 0.8, or 1.2
and �y=�x � 1.

FIG. 2 (color online). Critical nucleation energy with changing
elastic energy contribution and critical nuclei profiles.
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polynomials. For small �, the critical nucleus with lower
energy possesses the symmetry of a cubic crystal, i.e.,
either nearly circular or square with rounded corners. As
� increases to be above 0.35, the nucleus becomes non-
convex. For even larger � (above 0.5), while one saddle-
point curve maintains the cubic symmetry, there is a sec-
ond curve of saddle points with lower energy values cor-
responding to nuclei having lower symmetry groups.
Continuing the latter curve for smaller � below the inter-
section point shows that it leads to saddle points of higher
energy than that for the nonconvex, square, and nearly
circular nuclei. Therefore, for intermediate values of �,
we find the surprising result of critical nuclei with non-
convex surfaces being the most probable morphology. It
should be noted that the present work ignores the possible
presence of defects such as dislocations and interfaces, i.e.,
heterogeneous nucleation.

Thus, we observe that, with a stronger elastic energy
contribution, the formation energy for a critical nucleus
with a lower symmetry is lower than that with the cubic
symmetry but nonconvex interfaces (which are verified to
be indeed saddle points, with a 2D illustration of the local
energy surface around the nonconvex nucleus given in
Fig. 3, where one axis is along the solution direction, and
another is along a descent direction). To offer additional
understanding on the competition of the elastic and inter-
facial energies, we compare the energies in Fig. 3 for
rectangular nuclei of dimension a by 1=a with changing
aspect ratios. Taking a sharp interface limit of our
diffuse model, i.e., letting � be a Heaviside function
with �1 inside and outside the rectangle and sub-
stituting its Fourier coefficients f�̂�k� � sin��kxa��
sin��ky=a�=��

2kxky�g into (1), we get an estimation of
the elastic energy (solid red curve), while the sharp surface
energy is proportional to 2�a� 1=a� (dashed blue curve).
It is clear that the surface energy is the smallest for a � 1
(thus preferring the cubic symmetry), while the elastic
energy is lower with plate shapes. The diffuse-interface
model captures this competition and correctly distin-
guishes the parameter ranges where one energy dominates
the other, so that critical nuclei with lower symmetry are

most probable for large elastic energy contributions. It
should be noted that, even in two dimensions, there are
two equivalent variants for the critical nucleus with a lower
symmetry (thus, three variants in three dimensions).

In our calculation, we also observe that, for a fixed �,
with the increase of the driving force, the size of critical
nuclei reduces and the critical free energy decreases, simi-
lar to that predicted from the classical nucleation theory for
spherical particles.

In conclusion, we demonstrated in this Letter that the
morphology of a critical nucleus or a critical fluctuation in
elastically anisotropic solids can be predicted by a combi-
nation of the diffuse-interface approach and the minimax
algorithm. Our calculations reveal the fascinating possibil-
ity of nuclei with nonconvex shapes, as well as the phe-
nomenon of shape bifurcation and the formation of critical
nuclei whose symmetry is lower than both the new phase
and the original parent matrix.
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