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Swirling of Viscous Fluid Threads in Microchannels
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Viscous threads that are swept along in the flow of a less viscous miscible liquid can break up into
viscous swirls. We experimentally investigate the evolution of miscible threads that flow off center in
microchannels. Thin threads near the walls of a straight square channel become unstable to shear-induced
disturbances. The amplification of the undulations transverse to the flow direction ultimately causes the
threads to break up and form an array of individual viscous swirls, the miscible counterparts of droplets.
This swirling instability provides a means for passively producing discrete diffusive microstructures in a

continuous flow regime.
DOI: 10.1103/PhysRevLett.98.264501

The dynamics and coupling between miscible liquids
having different viscosities and velocity fields can lead to a
rich array of morphologies and instabilities. Although
numerous studies have addressed the stability of viscous-
stratified flows [1-5] and the viscous fingering that results
from miscible displacements of a liquid into another [6—8],
relatively less is known about the behavior of viscous
threads in miscible environments [9]. This is due at least
in part to the transient and short-lived nature of miscible
viscous structures, since initially segregated liquids will
ultimately evolve into a homogenous mixture due to inter-
molecular diffusion. For short intervals of time 7, slender
viscous structures can exhibit dynamic responses to stress
resembling those of elastic solids [10—13]. In this situation,
the fluid displays “‘intermediate’” properties between a
fluid having a viscosity 1 and an amorphous solid having
a modulus of rigidity w. The relationship between the
orders of magnitude of these parameters is u ~ n/7
[14]. By analogy to the term “elastica,” referring to slender
elastic structures, slender viscous structures are sometimes
called “viscida” [15].

Microfluidic systems offer a fast and compact means of
investigating the production of regular patterns of fluids far
from equilibrium [16—19]. Microfluidic investigations of
viscous threads flowing in a less viscous miscible liquid in
diverging slit microchannels have revealed a transition
from periodic to chaotic folding [20]. The rupturing of a
continuous liquid phase into discrete elements represents
an important class of instabilities in fluid mechanics.
Threads and jets of one liquid in another immiscible fluid
can undergo a capillary instability and break up into drop-
lets through amplification of varicose undulations by sur-
face tension [21,22]. By contrast, in the absence of surface
tension, the ability to rupture viscous threads into discrete
elements would open up a wide range of possibilities for
structuring flows.

Here, we investigate the dynamics of two viscous
threads surrounded by a less viscous miscible liquid that
coflow in straight square microchannels. We have con-
structed a silicon-based microfluidic module with two

0031-9007/07/98(26)/264501(4)

264501-1

PACS numbers: 47.15.Fe, 47.20.—k, 47.60.+, 83.50.—v

symmetrical square hydrodynamic focusing cross channels
in series [Fig. 1(a)]. The module is a sandwich of a silicon
wafer of thickness 42 = 100 um that has been etched
through and anodically bonded between borosilicate glass
plates on both sides. Two miscible silicone oils (poly-
dimethylsiloxane) having viscosities 7; = 6 cP (L1) and
1, = 500 cP (L2) are chosen, so diffusion and buoyancy
do not significantly alter the threads as they traverse the
channel [20].

In the first cross channel, the less viscous oil is injected
with a volume flow rate Q;, and the more viscous oil is
injected from the two side channels at a total rate Q,. The
flow adopts a steady-state configuration consisting of a
central strip of L1 in contact with the upper and lower
walls and bounded by L2 on either side. In the second
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FIG. 1 (color online). Forming two off-center viscous threads.
(a) Two-step hydrodynamic focusing in square channels. The
less viscous liquids L1 and L3 (n; = n3 = 6 cP) are identical
and injected at volume flow rates, Q; and Qj, respectively; the
more viscous liquid L2 (7, = 500 cP) is injected at Q, and
forms two threads. (b) Schematic cross-sectional contour plot of
the mean flow velocity in the square outlet microchannel.
(c),(d) Experimental micrographs with flow rates (wl/min):
(© 01 =20,0,=1,03=060;(d) 01 =20, 0, =1, 03 ="7.
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cross-channel, the less viscous oil (L3 = L1) having
n3 = 7 is injected from the two side channels at a total
rate 03 and impinges on this stratified flow. The two layers
of the more viscous oil detach from the walls and become
completely surrounded by less viscous oil, yielding two
symmetrical threads swept along in the flow of L1 and L3.
The lubrication of the threads by the less viscous oil
represents a configuration that reduces dissipation. The
threads flow off-center in the straight square channel hav-
ing length L = 50h and are initially characterized by their
separation d and their width . Since buoyancy is negli-
gible, the threads are assumed to travel downstream in the
median plane of the square channel at z = 0. Therefore,
their separation d and their position relative to the side-
walls, a = (h — d)/2, are solely functions of the coordi-
nate y. Thin threads are formed when Q, <K Q; + O3,
corresponding to &€ < h. In this asymptotic regime, we
assume that the threads do not significantly perturb the
mean flow field, U = U(y, z)x, generated by L1 and L3
[Fig. 1(b)]. In the second cross channel, the flow structure
displays characteristic “‘horns” [Figs. 1(c) and 1(d)] as the
two layers of L2 detach from the walls due to the cross flow
of L3. All flows are strongly laminar since the Reynolds
numbers are Re; = p(Q; + Q3)/(n,h) <1 for L1 and
L3 and Re, = p,0,/(n,e) < 1072 for L2, where p; is
the density associated with the liquid i. Hence, the threads
have well-defined shapes and positions with negligible
drift velocities, and the flow is fully developed after an
entrance length of approximately /4.

We have measured d as a function of Q,/ Q5 for different
values of Q,/Qj5 [Fig. 2]. The laminar flow of the identical
liquids L1 and L3 forms a virtual ““interface’ at which the
threads are localized. The theoretical width of the focused
stream of L1, d*(Q,/Q3), can be simply computed by
integrating the Fourier series of U(y, z) in the square
channel [23] between z = —h/2 and h/2 and between y =
—d*/2 and d*/2 in order to obtain Q;(d*) for d* ranging
between 0 and 4. Since the total flow rate, Q,,, = Q; + Os,
does not depend on d*, one can write Q,/Q; =
(Qwt/Q; —1)7' and then plot d*/h versus Q,/Q;
[Fig. 2]. Although the trend for the computed d* is very
similar to the experimental data for d(Q,/Q3), it slightly
underestimates d. For reference, we also plot the analytical
solution of the Stokes equations, d*/h=/[1+
(0,/03) 171, for a plane geometry [24]. The measured
d lies in a narrow band between the lower and upper
bounds defined, respectively, by d* and d** [Fig. 2]. The
threads are swept along by a velocity field that can be
estimated by the parabolic (Poiseuille) flow: U(y, z = 0) =
Umax[l - (ZY/h)z] with Unax = 21(Ql + 05+ Q3)/h2,
where the constant 2.1 is due to the channel’s square cross
section. Given the large viscosity contrast,, > 7, the
velocity field within the threads is nearly uniform with a
velocity U, which approximately matches U(y = d/2,z =
0). To characterize the thread’s cross-sectional shape, we
compare the measured & to the diameter of a cylindrical
thread e., which can be estimated by mass conservation:
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FIG. 2. Thread separation d/h versus the flow rate ratio
0,/Q5. Numerical computation of the position of the interface
between L1 and L3 predicts a separation d* (solid line). An
analytic equation assuming a plane geometry yields a prediction
d** (dashed line). Inset: Measured thread width &/h compared to
the diameter of a thread of circular cross section &./h.

80 = {20,/[TUpa(1 — (d/RP)TH? [Fig. 2, inset]. We
find empirically that & = 0.75¢., which suggests the
threads would rather assume an elliptical cross-sectional
shape with & = &, being the minor axis and &, being the
major axis. In order to conserve the mass flux inside the
threads, the thread cross-sectional area follows TE €, /4 =
we?/4yielding €, = (0.75)%¢,. This corresponds typically
to an ellipse with an aspect ratio of 2 between the major
and the minor axis. By adjusting the flow rates, £ and d can
be set independently, thereby permitting a systematic ex-
ploration of the evolution and coupling of off-axis viscous
threads in channel flows.

By contrast to a single nondiffusive thread flowing sta-
bly in the center of the microchannel, off-axis threads can
become unstable [Fig. 3(a)]. As the threads flow down-
stream, sinuous perturbations with a characteristic wave-
length A develop in the y direction [Fig. 3(b)]. These
disturbances are accompanied by a bending and a stretch-
ing of the thread and are amplified into a continuous wave-
like pattern. Eventually, each thread breaks up into a linear
array of discrete viscous swirls. Two widely separated
threads are decoupled and the growth of perturbations
can occur at different locations in the channel. Empiri-
cally, we find that the slenderness ratio of the perturbations
A/ &, analogous to the most unstable aspect ratio, increases
with the distance a = (h — d)/2 from the nearest sidewall
[Fig. 3(c)]. We interpret this instability as resulting from
the competition between the torque generated by the mean
flow on the threads and their dynamic viscous rigidity.
According to the slender-body theory for Stokes flows
[25,26], the drag force acting on a slender spheroid of
length A and diameter € can be expressed to first order as
Fp = 27n,AU/[In(A/e) — 0.8]. Since our threads are in-
itially continuous, we neglect end effects [27] and use
Fp = 27 m AU for the drag force acting on a finite section
of length A of an infinite cylindrical thread, a shape we
shall now assume to simplify the analysis. The difference
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FIG. 3. Shear-induced destabilization of viscous threads.
(a) Disturbances are amplified as the threads propagate down-
stream (from left to right). Flow rates (ul/min): Q; = 40,
0, =5, Q3 = 20. (b) Schematic diagram of the onset of swirl-
ing instability. (c) Slenderness ratio A/& versus distance to the
sidewall a/h. Solid line: A/e =2.8 X 107%(n,/7n,)/(1 —2a/h).
(d),(e) Large slenderness ratios: (d) A/e = 9.6, Q; = 10, Q, =
1, Q3 = 30, (e) /\/8 = 78, Ql = 10, Q2 = 5, Q3 = 40.

in drag forces on either side of a given thread section, at
positions y* = (d = &)/2, produces a torque T =
(e/2)(Fpt — Fp7) = 4 Ade* Uy /h?. According
to the viscous-elastic analogy, the dynamic Young’s modu-
lus of the threads scales as E ~ 37,/7 [11], where 1 ~
h/(2U ,.x) is the characteristic (short) time scale associated
with the flow. The bending moment K associated to the
threads is K = EI/R, where I = (7/4)(g/2)* is the mo-
ment of inertia of a cylindrical thread and R is the radius of
curvature of the centerline [14]. Since the viscous torque
initially acts over a distance &/2 from the thread centerline,
the typical radius of curvature is estimated to be R ~ &/2,
which yields to the following critical bending moment:
K = (37/16)n,U &> /h. As the torque acts on the
thread, the thread begins to rotate and bend around a series
of nodes. The spacing between the nodes, A, can be esti-
mated by balancing the moments at the onset of the insta-
bility: 7 = K. We obtain a relationship for the slenderness
ratio of the perturbations: A/e= C(n,/n,)/(1—2a/h),
with the constant C = 3/64 =~ 4.7 X 10™2. This relation
diverges as the thread approaches the center of the channel
where the velocity gradient vanishes. We fit the measured
aspect ratio to Ceyp(12/m1)(1 — 2a/h) [Fig. 3(c)], where
Ceyp 1 the only adjustable parameter and we find Cey, =
2.8 X 1072, yielding C/ Cexp = 1.7. Since our approximate
model is based on scaling arguments for 7 and K, it yields
good qualitative agreement, on the order of magnitude of
the experiment. Taking into account the elliptical shape of
the threads does not significantly change C. The scatter in
the data for small a/h gives evidence of more complex

dynamic processes occurring near the walls [Fig. 3(a)] as
opposed to near the channel axis [Figs. 3(d) and 3(e)].
The deformation morphologies of the threads as the
instability develops depend on A/e [Figs. 4(a)-4(c)]. A
thread’s centerline evolves from initial sinuous undulations
towards oblique wavelike shapes. For large A/ e [Fig. 4(a)],
a section of a thread rolls up on itself, similar to what has
been observed for long flexible filaments [28]. For smaller
A/ e [Figs. 4(b) and 4(c)], the peaks in the high shear region
grow by collecting liquid into central “‘bulbs’ at the ex-
pense of the regions in between them, which thin and
resemble ‘‘tails.” Eventually, the tails become so thin
that they disappear as the molecules diffuse into the sur-
rounding oil, thereby separating neighboring swirls.
Initially, the average swirl diameter D can be estimated
by mass conservation to scale as D ~ (A&2)!/3. After de-
taching from one another, isolated swirls gain angular
momentum and rotate [Fig. 4(d)], as expected for objects
in a shear field [29,30]. Small fluctuations in a swirl’s
position toward the center of the channel can induce a
local increase of its velocity and cause neighboring swirls
to pair. These swirls are heterogeneous and ephemeral
structures; eventually diffusion causes them to disappear.
While we also observe the swirling instability with a
single off-center thread, the system formed by two initially
symmetrical threads provides access to a wider range of
dynamical behaviors. In particular, we identify two re-
gimes: one corresponding to the decoupling of thin threads
near the walls and the other corresponding to the coupling
of thick threads near the center. The hydrodynamic cou-
pling of the threads is best revealed in a diverging slit

FIG. 4. Time series (from top to bottom in each panel) of
thread deformations and swirl motion. (a)—(c) Single thread
near the lower sidewall (thread’s reference frame).
(@) AJe =5, At=4X10735), flow rates (ul/min): Q; =
20, 0, =2, 0;=20. (b) \/e =41, At=3X10"3s, Q, =
20, 0, =4, 0;=20. (c) A\/Je =38, At=3X103s, 0, =
15, O, =3, O3 = 15. (d) Swirls rotate (arrows) in opposite
directions as they move downstream (channel’s reference frame),
Q,=20, O, =1, 0; =20 (At =2 X 1073 s). Neighboring
swirls can pair (*).
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FIG. 5. Crossover between the swirling instability and the
phase-locked multiple folding instability of two threads in a
diverging slit microchannel. (a) In the decelerating flow, swirls
deform, pile up, and merge to form heterogeneous streams, flow
rates (ul/ min): Q; = 20, O, = 1, and Q5 = 20. (b) Destabil-
ized thin threads, Q; = 20, O, = 5, and Q3 = 40. (c),(d) Cou-
pled threads, O, = 5 and Q3 = 15: (c) phase-locked multiple
folding, Q; = 5; (d) intermingling folding pattern, Q; = 1.

microchannel [Fig. 5]. At the divergence, swirls pile up and
merge with each other forming heterogeneous streams
[Fig. 5(a)]. As d decreases, thin threads are still subject
to shear-induced disturbances but remain continuous; at
the divergence, they form irregular decoupled folding pat-
terns [Fig. 5(b)]. Thick proximate threads remain stable
near the center and fold in phase in the divergence
[Fig. 5(c)]. The phase locking of nearby threads resembles
the coupling between flexible filaments in a flowing fluid
[31] and jets descending into density-stratified surround-
ings [32]. For d < g, although threads are distinct from
one another, the switchbacks of folding interpenetrate
[Fig. 5(d)]. Eventually, as Q; — 0, we recover the sym-
metric folding of a single thread [20].

Although the swirling instability we observe presents
some similarities with the inertially dominated Kelvin-
Helmholtz instability [21], it is more closely related to
shear-induced buckling of viscida [33] and elastica [28].
Linear and nonlinear stability analyses, as well as numeri-
cal simulations, would provide more quantitative insights
into the swirling instability. Our study demonstrates the
possibility of forming and controlling the size and the
shape of discrete diffusive viscous elements at the
microscale.
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