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We demonstrate an isotropic phase matching in properly designed nonlinear two-dimensional photonic
crystals. In addition, by combining left- and right-handed properties at the fundamental and second-
harmonic frequencies, we obtain a backward second-harmonic generation. These two properties lead to an
unusual second-harmonic localization effect in perfect lattice photonic crystals.
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Photonic crystals (PCs) are periodic materials that offer
new perspectives for manipulating light at the nanometer
scale [1]. The index periodicity in several directions of
space produces a large variety of optical effects that open
routes for designing integrated photonic components [2].
For example, strong light confinement inside compact PC
devices enhances the nonlinear material feedback [3,4]. In
this scheme, high second-harmonic conversion is expected
in the case of fundamental and/or second-harmonic reso-
nances in microcavities [5–9]. Another means for efficient
second-harmonic generation is to realize the so-called
phase matching condition in PCs. Efficient second-
harmonic emission requires the same optical index for
both the fundamental field (FF) and the second-harmonic
field (SHF). Unfortunately, semiconductor materials used
in PC technology are strongly dispersive and optically
isotropic. This optical index mismatch �n is quantified
by the coherence length Lc �

�
4�n [10]. The energy con-

version being a growing function of Lc, efficient conver-
sion requires a large value of Lc. In semiconductors
illuminated with a FF around 1 �m, the order of magni-
tude of Lc is of the micron scale, which leads to low
second-harmonic intensity level. However, the richness
of the PC dispersion bands permits to compensate the
optical material dispersion. An effective phase matching
[11–13] can be obtained when both fundamental and
second-harmonic Bloch wave vectors satisfy the relation:
k2! � 2k!, which represents a constraint on the wave-
length and on the incident angle. In that case, Lc tends to
infinity and the second-harmonic conversion is optimized.
Finally, the combination of both phase matching and high
electromagnetic fields confinement leads to giant conver-
sion inside finite height 2D-PCs [4,13] or to second-
harmonic conversion increasing as the fifth power of the
length in 1D PCs [14].

Up to now, the phase matching conditions could be
reached in specific propagation directions only. In this
Letter, we demonstrate that nearly perfect effective phase
matching can be achieved in all propagation directions
inside adequately designed 2D-PCs. Moreover, this all-
angle effective phase matching condition can be extended

from the blue to the red second-harmonic emission by a
simple scaling of the lattice constant. This unusual prop-
erty offers more flexibility for the design of compact
frequency converters in achieving the phase matching by
simply selecting the fundamental frequency whatever the
incident angle.

In addition, we demonstrate a novel SHF localiza-
tion effect obtained inside a perfect lattice PC. The struc-
ture we used presents left-handed (LH) and right-handed
(RH) properties at the fundamental and second-harmonic
frequencies, respectively. The combination of !-LH=
2!-RH properties leads to a backward second-harmonic
emission. This unusual second-harmonic process charac-
terized by a SHF propagating in the opposite direction with
respect to the FF has recently been theoretically predicted
in nonlinear left-handed metamaterials at microwave re-
gime [15,16]. Here, we demonstrate a SHF localization
mechanism in the visible spectrum that does not require
trapping either the FF or the SHF inside a PC microcavity.

First, we focus on the all-angle phase matching in a 2D-
PC. It is known that the propagation properties of PCs are
obtained through the dispersion band analysis. In particu-
lar, the computation of the dispersion surfaces and the
isofrequency curves allows the understanding of unusual
refraction behaviors. In general, the dispersion relations
between the wave vector and the frequency are anisotropic.
Here, the challenge consists in fulfilling two crucial points.
(1) The dispersion curves should be isotropic in order to
phase match both FF and SHF whatever the propagation
direction. In that case, we can define an effective phase
index [17] at both frequencies by: neff�!� �

jk!jc
! (where!

is the pulsation and c the light velocity in vacuum).
(2) Both effective phase indices should be equal, neff�!� �
neff�2!�, in order to have an optimal second-harmonic
conversion.

We have found that both criteria are simultaneously
fulfilled in a 2D-PC consisting of a hexagonal array (lattice
constant a) of airholes (radius r) etched in GaN (in the x-y
plane). We first demonstrate this approach for a SHF
emission at �=2 � 0:5 �m. By using the MIT-Photonic
BANDS package [18] for TM polarized light and for a fixed
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filling ratio, two sets of dispersion diagrams are computed
with the GaN indices [19] calculated at both fundamental
and second-harmonic frequencies (the indices are equal to
2.33 and 2.41 at 1 �m and 0:5 �m, respectively), see the
inset of Fig. 1. Then, we look for a couple of bands
satisfying both criteria (1) and (2) for the considered
frequencies. We have found that for the particular airholes
radius r � 0:425a, an isotropic effective phase matching
between the second and the eighth bands is achieved
around a=� � 0:511. This computation enables to deter-
mine the lattice constant of the crystal (a � 551 nm) and
then the airhole radius. This scheme has to be repeated for
each considered frequencies and permits to determine the
necessary PCs parameters satisfying the isotropic phase
matching condition. A simple representation of this effec-
tive phase matching is obtained by plotting the dispersion
surface of the eighth band on the same drawing as for the
second band but for both half frequencies and k2! vectors.
In Fig. 1, we remark that the eighth band cuts the FF
surface in a circular curve for the normalized frequency
a=� � 0:511. Therefore, at the fundamental wavelength
� � 1 �m, the FF and SHF are almost perfectly phase
matched in all directions. Hexagonal lattices with large
filling factor present highly symmetrical Brillouin zone
leading to quasi-isotropic dispersion diagrams for a wide
frequency range. These properties are crucial for satisfying
both criteria (1) and (2). However, the weak anisotropy of
the dispersion curves (less than 1%) produces a small

mismatch quantified by the coherence length Lc �
�

4jneff �2!��neff �!�j
. In Fig. 2, the effective indices variation

between �K and �M directions are plotted: they are ex-
actly equal in an intermediate direction. The index mis-
match in the crystalline directions leads to a coherent
length larger than 1200 �m and that approaches infinity
when the effective phase matching is satisfied. From Fig. 2,
it can be estimated that Lc is larger than 2000 �m for 60%
of the propagation directions. This giant coherent length
larger than the typical size of the PC devices usually
designed (<100 �m) enables one to consider that this
all-angle phase matching is perfect. Moreover, the PC
dispersion properties balance the GaN index dispersion
in all the visible SHF emission spectrum. A simple scaling
the lattice constant with a constant filling ratio enables to
extend the all-angle phase matching from the blue to the
red second-harmonic generation, see Table I.

Beyond the versatility of 2D-PCs in achieving isotropic
phase matching, the combination of opposite curvature
dispersion surfaces leads to a backward second-harmonic
generation. Indeed, at the considered normalized fre-
quency (a=� � 0:511), the k vectors and the group veloc-
ities vg are antiparallel for the second band while they are
parallel for the eighth band. Hence this 2D-PC behaves as a
!-LH=2!-RH system [20]. In the phase matching con-
figuration both SHF and FF k vectors are parallel; hence,
the associated group velocities are antiparallel. Finally,
both FF and SHF propagate in opposite directions inside
a left- and a right-handed media, respectively. We illustrate
this nonlinear effect inside a 6� 14 �m 2D-PC consti-
tuted by a hexagonal array of airholes (a � 511 nm and
r � 217 nm) and satisfying the all-angle phase matching
condition. We assume that the axis (001) of the GaN crystal
is perpendicular to the airholes plane. In that case and for
TM polarized fields, the term of the susceptibility tensor
that contributes to the SH generation process is ��2�zzz

FIG. 1 (color). Dispersion surfaces of the second (red) and
eighth (blue) bands. The circular intersection (red line) is the
isofrequency curve presenting the all-angle phase matching
condition. The inset represents the dispersion diagram where
the four first bands are computed for the GaN index at 1 �m (red
area) and the higher bands for the index at 0:5 �m (blue area).
The dashed lines represent the frequency regime presenting the
phase matching condition. The phase matching condition corre-
sponds to the intersection points of the eighth band plotted for
both half frequencies (dashed blue curve) and k vectors and the
second band (red curve).

FIG. 2 (color). Effective phase indices for the FF (red) and the
SHF (blue). The phase matching condition is satisfied between
�M and �K directions. The black curve represents the variation
of 1000=Lc in �m�1 unit with the propagation directions.
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which is about 11 pm=V. A Gaussian beam propagating in
the negative y direction at the fundamental wavelength
1 �m illuminates the PC in the �M direction. The
second-harmonic emission is computed by using a multiple
scattering method recently generalized to the parametric
field conversion problem [21]. In Fig. 3(a), a periodic
pattern due to multiple reflections at the PC interfaces
(Fabry-Perot resonance) is observed for the FF. This FF
is characterized by a group velocity pointing in the nega-
tive y direction and an opposite k vector. In Fig. 3(b), the
phase matched SHF is plotted: its pattern presents the same
spatial periodicity as for the FF. Indeed, the second-
harmonic emission is generated in the PC areas where
the FF magnitude is high. We also note that the magnitude
of the SHF increases linearly inside the PC, which corre-
sponds to the classical quadratic growth of the second-
harmonic efficiency observed in phase matched homoge-
neous media [10]. However, in accordance to the previous
analysis, the SHF propagates in a direction opposite to the
FF. This 2D-PC behaves as an effective mirror reflecting
the SHF generated by an incoming FF [15,16].

An even more interesting effect is achieved by consid-
ering an internal source emitting a FF inside an isotropic
phase matched !-LH=2!-RH system. It is known that the
introduction of PC lattice defects produces localized states
with high energy density that enhance the conversion in
single or doubly resonant microcavities [5–9]. Here, we
use the backward second-harmonic generation in order to
confine the SHF in a restricted PC area without the use of
lattice defects. In Fig. 4(a), a wire antenna positioned at the
center of the PC emits an isotropic FF at � � 1 �m (the
PC parameters are the same as those used in the previous
result). As discussed previously, at the fundamental fre-
quency, this PC behaves as a LH medium: the FF radiates
outward the PC but with a k vector pointing toward the
antenna, see Fig. 4(a). Therefore, the phase matched SHF
has also k vector pointing toward the wire antenna, which
leads to a second-harmonic efficiency growth directed
toward the FF emitter, see Fig. 4(b). We observe that the
SHF is confined inside a cylindrical area of radius smaller
than 1 �m. However, contrary to previous cases presenting
an external incoming pump field [Fig. 3(a) and 3(b)], here
both FF and SHF group velocities are collinear. This
phenomenon proceeds in fact from an interferential effect
combining a backward phase matched field (with k and vg

pointing toward the antenna) and a forward field (with

outward k and vg) propagating the energy accumulated
at the center of the device. Finally, the SHF is a localized
wave with a maximal magnitude condensed in a small area
(less than two lattice periods) and satisfying the outgoing
wave condition. This SHF localization effect is character-

FIG. 3 (color). (a), (b) represent the modulus of the electric
fields for the fundamental and second-harmonic frequencies,
respectively. The large arrows indicate the propagation direc-
tions of both FF and SHF.

TABLE I. Lattice constants and GaN optical indices for blue and red all-angle phase matching. The airholes radius is fixed to
r � 0:425a.

Second-harmonic wavelength GaN indices Lattice constant

400 nm n�800 nm� � 2:34 398 nm
n�400 nm� � 2:54

750 nm n�1500 nm� � 2:32 774 nm
n�750 nm� � 2:35
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ized by two unusual properties: first the SHF confinement
does not require introducing a defect lattice with the asso-
ciated localized states at the fundamental or/and the
second-harmonic frequencies; second, the location of the
maximal SHF intensity is solely fixed by the position of the
FF emitter. Despite this localization effect requires an
unusual media, phase matched in all directions and pre-
senting mixed left-hand- and right-handed behavior at both
frequencies, we have demonstrated that these properties
are encountered inside feasible 2D-PCs.

In conclusion, PC properties can overcome the classical
physical limits of optical nonlinear processes. We have
demonstrated a backward SHF localization effect, which
occurs in perfect lattices and only dependents on the
emitter location inside the PC area. This localization
mechanism needs an isotropic phase matched
!-LH=2!-RH system. We have shown that GaN 2D-PCs
behave as such a system in the visible second-harmonic
regime (400–750 nm). Similar properties are expected for
other nonlinear semiconductors (AlxGa1�xAs, for ex-
ample) in hexagonal or other lattices. We think that this
original approach opens interesting routes for the design of
compact frequency converters.
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Lett. 70, 702 (1997).

[12] M. Centini et al., Phys. Rev. E 60, 4891 (1999).
[13] J. Torres et al., Phys. Rev. B 69, 085105 (2004).
[14] Y. Dumeige et al., Phys. Rev. Lett. 89, 043901 (2002).
[15] V. M. Agranovich et al., Phys. Rev. B 69, 165112 (2004).
[16] I. V. Shadrivov, A. A. Zharov, and Y. S. Kivshar, J. Opt.

Soc. Am. B 23, 529 (2006).
[17] S. Foteinopoulou and C. M. Soukoulis, Phys. Rev. B 67,

235107 (2003).
[18] S. Johnson and J. Joannopoulos, Opt. Express 8, 173

(2001).
[19] N. Antoine-Vincent, J. Appl. Phys. 93, 5222 (2003).
[20] S. Foteinopoulou and C. M. Ssoukoulis, Phys. Rev. Lett.

90, 107402 (2003).
[21] E. Centeno and F. Felbacq, J. Opt. Soc. Am. B 23, 2257

(2006).

FIG. 4 (color). (a), (b) represent the modulus of FF and SHF,
respectively, inside a hexagonal 2D PC. In (a), the red wire
represents the FF emitter. In (b), the localized SHF combines two
opposite waves: a backward wave with a k vector pointing
toward the emitter (blue thin arrow) and a forward wave (dashed
thin arrow).
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