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We show that ballistic transport of optically excited atoms in an atomic vapor provides a nonlocal
nonlinearity which stabilizes the propagation of vortex beams and higher order modes in the presence of a
self-focusing nonlinearity. Numerical experiments demonstrate stable propagation of higher order non-
linear states (dipole, vortices, and rotating azimuthons) over a hundred diffraction lengths, before
dissipation leads to decay of these structures.
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The propagation and dynamics of localized nonlinear
waves is a subject of great interest in a range of physical
settings stretching from nonlinear optics to plasmas and
ultracold atomic gases [1,2]. The structure and stability of
nonlinear optical modes is determined by the interplay
between the radiation field and the material nonlinearity
[3]. The nonlinear response can be described by an opti-
cally induced change in the refractive index n, which is
typically approximated as a local function of the wave
intensity, i.e., n�r� � n�I�r��. However, in many real physi-
cal systems the nonlinear response is spatially nonlocal
which means that the refractive index depends on the
beam intensity in the neighborhood of each spatial point.
This can be phenomenologically expressed as n�r� �R
dr0K�r; r0�I�r0�, where the response kernel K depends

on the particular model of nonlocality [4].
It has been shown that nonlocality drastically affects

the stationary structure and dynamics of spatial solitons,
leading to such effects as collapse arrest of high
intensity beams and stabilization of otherwise unstable
complex solitonic structures [5–8]. Nonlocality is often
the consequence of transport processes which include
atom or heat diffusion in atomic vapors [9], plasma
[10] and thermal media [11], or charge transport in
photorefractive crystals [12]. In addition, long range inter-
actions are responsible for a nonlocal response in
liquid crystals [13] or dipolar Bose-Einstein condensates
[14].

Hot atomic vapors are an important and widely used
nonlinear medium. The nonlocal nonlinear response of
atomic vapors has previously only been associated with
state dependent transport of ground state atoms which
possess a multilevel structure [9]. In this Letter we intro-
duce a new mechanism of nonlocality which is provided by
the ballistic transport of excited atoms and is important
even for the simplest case of an idealized two-level atom.
We show using parameters representative of beam propa-
gation in rubidium vapor that ballistic transport plays a
dramatic role leading to stabilization of otherwise unstable
vortex modes and rotating solitonic structures in the pres-
ence of a self-focusing nonlinearity.

We start the theoretical development by briefly recalling
the main features of beam propagation in a hot atomic
vapor. We consider a scalar traveling wave E �
E�x;y;z�

2 ei�kz�!t� � c:c: For all parameters of interest the
refractive index is n ’ 1 so the wave intensity is I ’
�0c
2 jEj

2. In the slowly varying envelope approximation the
paraxial wave equation is
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where k � !=c. The susceptibilities �0 and �00 depend on
atomic parameters. We assume a two-level atomic model
for which the scattering cross section is � � �3�2

a=2���
�1� 4�2

0=�
2 � I=Is��1, and the index of refraction is n �

1� na��=k���0=��, where �a is the transition wave-
length, na is the atomic density, � is the full width at
half maximum (FWHM) natural linewidth, �0 �
!�!a is the detuning between the optical frequency !
and the atomic transition frequency !a � 2�c=�a, and Is
is the saturation intensity. For a probe beam propagating
along ẑ in a hot vapor we make the replacement �0 ! � �
�0 � kvz, where vz is the z component of the atomic
velocity. Averaging over a Maxwell-Boltzmann velocity
distribution at temperature T gives the linear and nonlinear
susceptibilities [15] �000 � �0Im�Z�a� ib��,
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where �0 � na6�bc3=!3
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is the FWHM

of the Doppler profile for an atom of mass m. The plasma
dispersion function is given by Z�z� � i

����
�
p

e�z
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Erfc��iz�,

where Erfc�z� � 1� �2=
����
�
p
�
Rz

0 dte
�t2 is the complemen-

tary error function.
For broad optical beams numerical solutions of Eqs. (1)

and (2) give an accurate description of propagation effects
in an atomic vapor. The physical effect leading to the
nonlinear optical response is the transfer of population
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from the ground to the excited state and the creation of
coherence between these states. Although motional effects
are accounted for as regards the Doppler smearing of the
transition frequency, atomic motion also results in trans-
port of excited atoms which leads to a nonlocal response.
The degree of nonlocality depends on the characteristic
length scales associated with the transport of excited state
atoms. The first length scale is the mean free path atoms
travel before a Rb-Rb collision occurs. This is given by
‘c � �

���
2
p
na���1, where � is the collisional cross section.

For collisions of ground state Rb atoms we use [16]
��g�g� � 2:5� 10�17 m2. The cross section for collisions
between excited and ground state collisions is much larger
since these collisions occur via a long range dipole-dipole
interaction [17]. The energy averaged cross section is
��g�e� 	 1:8�10�14���

T
p K1=2m2. The second length scale is ‘d �

~v�, which is the distance traveled by an atom moving at the
most probable speed ~v �

������������������
2kBT=m

p
in the 1=e lifetime �

of the excited state. For the 87Rb 5P3=2 level � ’ 26 ns.
Figure 1 shows that for T < 155 
C the ballistic transport
length for excited atoms is ‘d 	 7:5 �m and ‘d < ‘�g�e�c ,
‘�g�g�c . Thus, for these temperatures, transport of excited
atoms is ballistic with a length scale of ‘d. We note that the
density at T � 155 
C is na � 1020 m�3, which is several
orders of magnitude smaller than densities for which non-
local effects due to the Lorentz local field are important
[18].

We wish to find an expression for the nonlocal material
response that depends on the parameters � and ~v. We write
the total atomic density na � ng � ne as the sum of ground
and excited state partial densities and introduce rate
equations of the form @ng;e

@t � ��
I	�I�
@! � �ne� �Lg;e�ng;e�,

where Lg, Le are, as yet unknown, linear operators for
ground and excited state atoms and 	�I� � k��000 � �

00
nl�I��

is the absorption coefficient. If we assume that the total
density is unchanged by the presence of the laser field (this
is a reasonable assumption in hot vapors) we must have

Lg�ng� � �Le�ne�. If excited state transport were a dif-
fusive process we would have Le�ne� � Der

2ne and on
dimensional grounds De 	 � �v��

2=�	 ‘2
d=�.

The situation in the ballistic regime is different. The
collisionless Boltzmann equation for the density of
excited atoms is dne

dt �
@ne
@t � v � rrne. Working within the

paraxial approximation we are interested in the two-
dimensional problem where r � xx̂� yŷ and v � vxx̂�
vyŷ. The Green function is found by solving dne

dt �


�t�n0�r; v� with n0�r; v� � 
�r0�f�v�, and f�v� �
�m=2�kBT�e�v

2=~v2
, the two-dimensional thermal velocity

distribution. Integrating the resulting Green function
over the velocity distribution and accounting for the fact
that the excitation decays with rate � gives the
spatiotemporal Green function Gr�r; t; r0; t0;�� � 1

��2‘2
d
�

e���t�t0�

�t�t0�2
e�jr�r0j

2=�~v2�t�t0�2�. The Green function for the

steady state response is

 G�r; r0;�� �
1

�~vr

Z 1
0
d�e��r=�~v��e��

2
; (3)

where r � jr� r0j and the density of excited atoms due to
the intensity I � I0
�r0� is ne�r� � G�r; r0;�� 	�I0�I0

@! .
The result is plotted in the inset of Fig. 1 as a function of

the scaled coordinate r=‘d. We see, not unexpectedly, that
the ballistic response falls off much more rapidly than the
diffusive response. Note that

R
drG�r; 0; �� � 1=�, since

the time integrated response exponentially weights the
input over a time window � � 1=�. The spatial Fourier

transform of the Green function is given by F �G� �
���
�
p

� �

e1=�k‘d�
2

k‘d
Erfc�1=�k‘d��, which is well behaved with

limk!0F �G� � 1=�.
To complete the theoretical formulation of the wave

propagation problem we need to calculate the nonlocal
structure of the susceptibility �nl. When I is spatially
varying we can use the Green function to write the sta-
tionary response as

 �00nonloc
nl �r� � �

Z
dr0G�r; r0;���00loc

nl �I�r0��: (4)

The real part of the susceptibility is proportional to the
coherence between ground and excited states which decays
with rate �=2 so

 �0nonloc
nl �r� �

�
2

Z
dr0G�r; r0;�=2��0loc

nl �I�r0��: (5)

Equations (4) and (5) and the wave Eq. (1) constitute a full
description of time-independent wave propagation in a
two-level atomic vapor including Doppler broadening
and transport induced nonlocality.

The question of whether or not the ballistic transport is
sufficient to stabilize nonlinear modes can be investigated
numerically. A typical approach would involve linear
stability analysis which considers the original propagation
equations linearized around the stationary solutions. How-
ever, such a technique does not provide any information on

FIG. 1 (color online). Characteristic length scales ‘�g�g�c ,
‘�g�e�c , and ‘d in a Rb vapor cell as a function of temperature.
The inset shows the logarithm of the ballistic response function
	�‘d=r�

R
1
0 d�e

�r=�‘d��e��
2

(solid red line) and the response
function K0�r=‘d� for a 2D diffusive nonlocal equation [8]
(dashed blue line) as a function of r=‘d. The response functions
have been scaled to be equal at r � ‘d.
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structural stability, especially when linear and nonlinear
losses are not negligible. Therefore, in this work we em-
ployed direct beam propagation simulations to determine
stability properties of stationary solutions of Eqs. (1), (4),
and (5). Stable soliton propagation in numerical experi-
ments where the initial beam is perturbed by noise does not
constitute a rigorous proof of stability but does provide
strong support for the existence of observable nonlinear
modes in laboratory experiments. We use parameters
corresponding to off-resonant propagation in a high tem-
perature Rb cell (� � 780 nm, �=2� � 6:07 MHz,
�0=2� � 1:46 GHz, Is � 16:7 W=m2, T ’ 155 
C, na �
1020 m�3, ‘d � 7:5 �m), which result in the dimension-
less parameters a � 4, b � 0:0083, and �0 � 0:03. We
used this set throughout all the simulations presented in
this Letter.

In the conservative system (�000 � �00nl � 0) all simulated
soliton modes which included the fundamental soliton
state, single charged vortex, dipole soliton, and double-
charged vortex turned out to be stable if the power P �R
I�r�dr, is high enough. At least for the latter two modes

this is quite remarkable, since they are known to be un-
stable (or only stable in a small power window) for other
nonlocal models [8,19,20]. We attribute this enhanced
stabilization to the combination of nonlocality and non-
linear saturation. In fact, we inserted an artificial nonlinear
saturation in the nonlocal thermal model used in Ref. [19]
and found the same effect. In contrast, nonlinear saturation
without nonlocality does not stabilize higher order non-
linear modes [21]. The local Eqs. (1) and (2) feature a
stable ground state only.

Figure 2 illustrates both saturation and nonlocality for
the nonlocal single charged vortex mode. If we consider
only the saturation effect shown in Fig. 2(a), the resulting
nonlinear index is the dashed blue line in Fig. 2(b).
Together with the nonlocal kernel G [red line in the inset
of Fig. 1] we get the solid blue line, showing some filling in
of the central dip in the index profile, and the formation of a
broader ‘‘nonlocal waveguide.’’

The limiting mechanism with respect to long distance
propagation of higher order nonlocal nonlinear modes is
not destabilization but dissipation. The action of both �000

and �00nl is not negligible over one diffraction length zd �
2k‘2

d [22]. As an illustrative example, the propagation of
the nonlocal single charged vortex mode, is shown in
Fig. 3(a). As input power we use about 0.4 W. Note the
clearly visible influence of the nonlinear term �nl in the
blue power curve. The nonlocal vortex survives a propa-
gation distance of more than 150zd [see Fig. 3(b)]. For
comparison, the propagation of the local vortex with the
same input power is shown in dashed lines in Fig. 3(a).
This vortex disintegrates after less than 15zd [see
Fig. 3(d)]. Hence, we clearly see that the stabilization is
due to nonlocality. With the same input power of about
0.4 W, we also observed a robust nonlocal dipole [see
Fig. 3(e)] and double-charged vortex [see Fig. 3(f)].

The key feature enabling robust nonlocal dissipative
propagation over a hundred diffraction lengths is the above
mentioned stability for high powers. Starting in the stable
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FIG. 2 (color online). (a) Saturation function fsat � Re�Z�a�
ibI�� � Re�Z�a� ib�� for a � 4 and b � 0:0083. (b) Nonlocal
single charged vortex mode with power P ’ 0:4 W (red line and
red axis). The solid blue line shows the nonlocal nonlinear index
�0nl computed from Eq. (5), the dashed blue line the local one
computed from Eq. (2a) (blue axis).

FIG. 3 (color online). (a) Nonlocal (solid lines) and local
(dashed lines) dissipative propagation of the single charged
vortex mode with input power 0.4 W. The blue lines and blue
axis show the beam power, the red lines and red axis the maximal
intensity versus propagation distance. (b) Intensity and phase
distribution of the nonlocal single charged vortex at input z � 0
and at z � 160zd just before it decays. (c) Maximal intensity
(red) and FWHM (green) of the nonlocal single charged vortex
as a function of beam power. The solid lines are computed upon
propagation, the diamonds from stationary numerical solutions
of the conservative problem. (d) Intensity and phase distribution
of the local single charged vortex at z � 0 and at z � 15zd when
it decays. (e) Intensity and phase distribution of the nonlocal
dipole mode at z � 0 and at z � 160zd just before it decays.
(f) Same for the nonlocal double-charged vortex at z � 0 and at
z � 100zd.
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power regime, dissipation makes the nonlinear mode
‘‘glide down’’ the family branch until it reaches powers
in the unstable regime. Figure 3(c) confirms this property
by comparing maximal intensity and FWHM obtained
upon propagation with values found from exact numerical
solution of the conservative problem using the method
described in [8].

To complete our analysis of experimentally relevant
nonlinear states we now consider a more general class of
solutions, the so called azimuthons [23]. These are spa-
tially rotating structures (rotation frequency �) described
by the ansatz E�r;�; z� � U�r;���z� exp�i
z� in the
conservative system. For � � 0, azimuthons become or-
dinary (nonrotating) solitons with propagation constant 
.
The simplest family of azimuthons represents the transition
from a dipole soliton to a single charged vortex soliton (for
fixed propagation constant 
). The single charged vortex is
composed of two equal amplitude dipole-shaped compo-
nents with relative phase of �=2. If these two components
have different amplitudes they constitute an azimuthon (or
rotating dipole). As pointed out in [23], the rotation fre-
quency � is determined by the amplitude ratio of the two
constituent modes (modulation depth � � jmaxReU�
maxImUj=maxjUj) and, of course, the propagation con-
stant 
.

In Fig. 4 we show a few snapshots of the dissipative
propagation of two azimuthons, namely, rotating dipole
and quadrupole modes. As input condition we used the
single- and double-charged vortices with appropriate am-
plitude modulation. In spite of the very rough input shapes,
both rotating states survive propagation over distances
comparable with those of the vortices. It is worth noticing
that as power and modulation depth � of these azimuthons
decrease due to dissipation, their angular frequency con-
tinuously varies upon propagation.

In conclusion, we have shown that ballistic transport of
optically excited atoms in a thermal vapor provides a
generic nonlocal nonlinearity which can stabilize the

propagation of vortices and other higher order modes in a
self-focusing medium. For sufficiently high power we
found a stable dipole mode, single and double-charged
vortices, and related rotating azimuthons. In realistic mod-
els dissipation is not negligible. Nevertheless, numerical
experiments using experimentally accessible parameters
demonstrate robust propagation over a hundred or more
diffraction lengths. This is possible due to adiabatic con-
version into solitons with lower power.

Simulations were performed on the SGI Altix cluster of
the Australian Partnership for Advanced Computing.
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