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We report on a direct visualization of coherent destruction of tunneling (CDT) of light waves in a
double well system which provides an optical analog of quantum CDT as originally proposed by
Grossmann, Dittrich, Jung, and Hänggi [Phys. Rev. Lett. 67, 516 (1991)]. The driven double well,
realized by two periodically curved waveguides in an Er:Yb-doped glass, is designed so that spatial light
propagation exactly mimics the coherent space-time dynamics of matter waves in a driven double well
potential governed by the Schrödinger equation. The fluorescence of Er ions is exploited to image the
spatial evolution of light in the two wells, clearly demonstrating suppression of light tunneling for special
ratios between the frequency and amplitude of the driving field.
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Control of quantum tunneling by external driving fields
is a subject of major relevance in different areas of physics
[1,2]. For more than one decade the driven double well
potential has provided a paradigmatic model to investigate
tunneling control in such diverse physical systems as cold
atoms in optical traps, superconducting quantum inter-
ference devices, multiquantum dots, and spin systems.
Depending on the strength and frequency of the driving
field, suppression [3,4] or enhancement [5] of tunneling
can be achieved. Tunneling enhancement is usually ob-
served for high field strengths and driving frequencies
close to the classical oscillation frequency at the bottom
of each well. Since the enhancement generally involves a
transition through an intermediate state which is chaotic
for strong enough driving amplitudes, it is often referred
to as ‘‘chaos-assisted tunneling’’ [1,6]. Observations of
chaos-assisted tunneling have been reported in atom op-
tics experiments [7] and in electromagnetic analogs of
quantum-mechanical tunneling [8,9]. In particular, tunnel-
ing enhancement has been observed in two coupled optical
waveguides [9]. In the opposite limit, Grossmann and co-
workers [3] found that, for certain parameter ratios be-
tween the amplitude and frequency of the driving, tunnel-
ing can be brought to a standstill. They termed this effect
‘‘coherent destruction of tunneling’’ (CDT) and, since
then, it has been of continuing interest. Driven tunneling
is related to the problem of periodic nonadiabatic level
crossing and Landau-Zener (LZ) transitions [1,10]. In
particular, in the strong modulation limit CDT may be
viewed as a destructive interference effect [10]. In spite
of the great amount of theoretical work devoted to CDT,
to date most experimental evidence of CDT is rather in-
direct. In condensed-matter systems, dephasing and many-
particle effects make tunneling control more involved [11].
In Ref. [12] coherent control of Rabi oscillations in
Josephson-junction circuits irradiated by microwaves has
been reported; however, the condition for CDT was not

reached. Quantum interference effects and evidences of
CDT in qubit systems have been recently reported in
[13,14], whereas suppression of quantum diffusion, also
known as dynamic localization, has been experimentally
demonstrated in Refs. [15–17]. However, CDT is a rather
more distinct effect than dynamic localization (see [1,18]).
For a clean-cut demonstration of CDT, a direct visualiza-
tion of the dynamics is desirable, which was not accom-
plished in all these previous experiments. Engineered
optical structures, on the other hand, have been recently
demonstrated to provide a very appealing laboratory tool
for a direct visualization of optical analogs of quantum-
mechanical phenomena which require a high degree of
coherence [19]. In this Letter, we report on the first visual-
ization of CDT dynamics using an optical analog of a
driven bistable Hamiltonian based on two tunneling-
coupled curved waveguides [20], which enables experi-
mental access to the full space-time evolution of the cor-
responding quantum-mechanical problem [3]. The struc-
ture designed to visualize CDT consists of a set of two
L � 24-mm-long parallel channel waveguides, placed at a
distance a � 11 �m, whose axis is sinusoidally bent along
the propagation distance z with a bending profile x0�z� �
A cos�2�z=�� [see Fig. 1(a)]. The waveguides have been
manufactured by the ion-exchange technique [21] in an
active Er-Yb phosphate substrate and probed at � ’
980 nm wavelength using a fiber-coupled semiconductor
laser [Fig. 1(b)] with ’ 8 �m mode diameter. A transverse
scan of the fiber along the sample is used to preferentially
excite either one of the two wells. The probing light is
partially absorbed by the Yb3� ions (absorption length
�6 mm), yielding a green up-conversion luminescence
arising from the radiative decay of higher-lying energy
levels of Er3� ions [22]. By recording, at successive propa-
gation lengths, the fluorescence from the top of the sample
using a CCD camera connected to a microscope (magnifi-
cation factor �12) mounted on a PC-controlled micro-
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positioning system, we could trace with accuracy the flow
of light along the sample. It was previously shown [20] that
the evolution of light waves in the optical double well
system is formally equivalent to the dynamics of a
periodically-driven nonrelativistic quantum particle in a
double well potential. In the scalar and paraxial approx-
imations, light propagation is described by the equation
[9,20]
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x;y � V�x� x0�z�; y� : (1)

where � 	 �=�2�� � 1=k is the reduced wavelength,
V�x;y���n2

s�n2�x;y��=�2ns�’ns�n�x;y� is the double
well potential, n�x; y� is the refractive index profile of
the two-waveguide system, and ns is the reference (sub-
strate) refractive index. The quantum-optical analogy can
be retrieved after a Kramers-Henneberger transforma-
tion [17,20] x0 � x� x0�z�, y0 � y, z0 � z, ��x0; y0; z0� �
 �x0; y0; z0� exp��i�ns=�� _x0�z

0�x0 � i�ns=2��
Rz0

0 d� _x2
0����,

where the dot indicates the derivative with respect to z0, and
after elimination of the y0 dependence of the field� using a
standard effective index method [23]. Equation (1) is then
transformed into the following Schrödinger equation for a
particle of mass ns in the double well potential Ve�x0� ’
ns � ne�x

0� under the action of a sinusoidal force F�z0�
[20]:
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where ne�x0� is the effective index profile of the wave-
guide system and F�z0� � �ns �x0�z

0� � �4�2Ans=�2�

cos�2�z0=�� is the ac force. Note that, in the optical
analog, the reduced Planck constant is played by the re-
duced wavelength � of photons, whereas the temporal
variable of the quantum problem is mapped into the spatial
propagation coordinate z0. CDT is thus simply observed as
a suppression of photon tunneling between the two wave-
guides along the propagation direction.

The refractive index profile n�x; y� has been measured
by a refracted-near-field profilometer (Rinck Elektronik) at
670 nm. The measured 2D index profile is depicted in
Fig. 2(a), together with its section profiles along the hori-
zontal (HH) and vertical (VV) lines. Figure 2(b) shows the
corresponding symmetric double well potential Ve�x� ’
ns � ne�x� obtained by the effective index approximation.
To derive ne�x�, the measured 2D index profile n�x; y� was
fitted [see dashed curves in Fig. 2(a)] by the relation [24]
n�x; y� ’ ns � �n�g�x� a=2� � g�x� a=2��f�y�, where
�n ’ 0:0124 is peak index change, g�x� � �erf��x�
w�=Dx�� erf��x� w�=Dx��=�2erf�w=Dx�� and f�y� �
exp��y=Dy� define the shape of the index profile parallel
to the surface of the waveguide (x direction) and perpen-
dicular to the surface (y direction), respectively; 2w ’
5 �m is the channel width and Dx ’ 4:3 �m, Dy ’

3:3 �m are the lateral and in-depth diffusion lengths.
The numerical computation of the eigenvalues for the
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FIG. 2 (color online). (a) Measured refractive index profile of
the double waveguide system. (b) Computed profile of the
effective 1D double well potential. (c) Manifold of quasienergy
crossing in the (�, A) plane (solid line). The dashed line has been
evaluated from the first zero of the Bessel function using Eq. (3).
The inset is an enlargement of the linear portion of the manifold,
corresponding to CDT. The five points in the figure correspond
to the geometrical parameters of the optical waveguides manu-
factured in our experiment.
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FIG. 1. Microscope images (top view) of the sample showing
(a) a few sets of manufactured coupled optical waveguides, and
(b) the fiber coupling geometry for waveguide excitation.
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Hamiltonian H 0 � ��
2=�2ns�@

2
x0 � Ve�x

0� in the absence
of the driving force indicates that the double well poten-
tial Ve supports four bound modes �l�x0� whose energies
El (l � 1, 2, 3, 4) are depicted in Fig. 2(b) by the four
horizontal solid lines. The linear combinations uR;L�x0� �
��1�x0� � �2�x0��=

���
2
p

of the eigenfunctions �1�x0� and
�2�x0� associated to the quasidegenerate energy levels E1

and E2 below the barrier correspond to photon localization
in the right (R) or in the left (L) well of the potential, so that
an initial excitation of one of the two wells, obtained by
launching the light into either one of the two waveguides, is
given approximately by the superposition of the two lowest
eigenstates �1�x0� and �2�x0�. For the straight waveguides,
the field evolution is dominated by the splitting of
this doublet, leading to a periodic tunneling of photons
between the two waveguides with a spatial period d12 �
2��=�E2 � E1� ’ 7:94 mm. This is clearly shown in
Fig. 3(a), where the measured fluorescence pattern corre-
sponding to initial excitation of one of the two waveguides
is reported. For the sake of clearness, in the picture the
luminosity level of the fluorescence, which decreases with
propagation distance due to light absorption, has been
gradually rescaled at successive frames. The measured
pattern is very well reproduced by a direct numerical
simulation of Eq. (1), performed with a standard beam
propagation software (BEAMPROP 4.0). Higher-order bound
modes of the double well potential shown in Fig. 2(b) can
be excited by different beam launching conditions. For
instance, if the fiber is positioned in the middle between
the two waveguides, an excitation of the modes �1�x� and
�3�x� with even symmetry is preferentially attained. In this
case, the field evolution is dominated by the splitting of the
states �1�x� and �3�x�, leading to a periodic fluorescence
pattern with the short spatial period d13 � 2�=�E3 �
E1� ’ 545 �m [see Fig. 3(b)]. The tunneling dynamics in
the presence of the external force F strongly depends on
the amplitude and (spatial) frequency ! � 2�=� of the
force as compared to the energy level spacing of the double
well system [1]. For instance, at modulation frequencies
comparable with the frequency spacing �E3 � E2�=�, tun-
neling is expected to be enhanced. This case was previ-
ously demonstrated for a two-waveguide optical system in
Ref. [9]. Conversely, CDT occurs approximately for a

modulation frequency in the range �E2 � E1� & �! &

�E3 � E2� and for a modulation amplitude that corresponds
to exact crossing between the quasienergies �1 and �2

associated to the lowest tunnel doublet [1]. In Fig. 2(c)
the solid curve shows the manifold associated to the exact
crossing �2 � �1 in the (�, A) plane, as numerically com-
puted by means of a two-level approximation of the related
driven tunneling problem [1,4]. In the high-frequency
limit, i.e., for �!� �E2 � E1�, but �!< �E3 � E2� to
avoid the participation in the dynamics of the third level of
energy E3, an approximate expression for the quasienergy
difference �� � �2 � �1 reads [1,4,20]

 �� � �E2 � E1�J0

�
2��12nsA

��

�
; (3)

where �12 � h�1jxj�2i. Considering the first zero of the
Bessel function, the condition �� � 0 is thus represented
by a straight line in the (�, A) plane, which is depicted by
the dashed curve in Fig. 2(c). Such a curve, however,
deviates from the exact one as � increases and approaches
4��=�E2 � E1� ’ 16 mm, where the solid curve drops
toward zero. Crossing of the quasienergies is a neces-
sary—but not a sufficient—condition for the occurrence
of CDT. In fact, CDT requires additionally that the degen-
erate Floquet states at exact energy crossing do not show
appreciable amplitude oscillations in one period. A de-
tailed numerical analysis of Eq. (1) shows that CDT indeed
occurs along the linear portion of the manifold of Fig. 2(c),
i.e., for � & 2:5 mm, which is represented by the enlarged
inset in the figure. We experimentally demonstrated the
onset of CDT in this portion of the manifold by manufac-
turing three curved waveguide couplers corresponding to
the points 1, 2, and 3 of Fig. 2(c), i.e., to � � 1:5 mm, A ’
5:5 �m (point 1), � � 2 mm, A ’ 7:3 �m (point 2), and
� � 2:4 mm, A ’ 8:8 �m (point 3). Figure 4 shows the

4 mm 1 mm

(a) (b)
Experiment

Theory Theory

Experiment

z z

x

x

FIG. 3. Fluorescence light distribution (top view) in the
straight waveguide coupler, and corresponding light intensity
distribution predicted by Eq. (1), for different coupling condi-
tions. (a) Excitation of one of the two waveguides. (b) Beam
launching in the middle between the two waveguides.

FIG. 4. Measured fluorescence light distribution in the wave-
guide reference frame (x, z) for the straight waveguide coupler
(a), and for the three curved waveguide couplers [(b),(c), and (d)]
with increasing period � and amplitude A corresponding to
points 1, 2, and 3 of Fig. 2(c).
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measured fluorescence patterns, as recorded on the CCD
camera from the top of the sample, for the straight wave-
guide coupler and for the three curved waveguide couplers
when one of the two waveguides is excited at the input
plane. Note that, since the fluorescence is proportional to
the local photon density, the patterns in the figure map the
profile of j j2 in the ‘‘waveguide’’ reference frame.
Therefore, in Figs. 4(b)–4(d) the condition for CDT is
clearly demonstrated because the photon density follows
the sinusoidal bending profile x0�z� of the initially excited
well, without tunneling into the adjacent waveguide. We
also experimentally checked that the observation of CDT
requires that the following two conditions must be simul-
taneously satisfied: (i) quasienergy crossing, and (ii) ab-
sence of appreciable amplitude oscillations of the degen-
erate Floquet eigenstates within one oscillation period
[1,4]. As an example, in Fig. 5(a), we show the measured
fluorescence pattern—and corresponding photon density
pattern predicted by the theory—for the curved waveguide
coupler corresponding to point 4 of Fig. 2(c) (� � 2:4 mm
and A � 7:9 �m), in which the condition (i) is not satis-
fied. Note that in this case the pattern periodicity is broken
and tunneling is not suppressed, though the tunneling rate
is reduced as compared to the straight waveguide coupler
case [compare Figs. 4(a) and 5(a)]. Figure 5(b) shows the
measured fluorescence pattern for the curved waveguide
coupler corresponding to point 5 of Fig. 2(c) (� � 6 mm
and A ’ 20:5 �m). In this case the condition (i) for quasi-
energy crossing is satisfied; however, over one oscillation
period the Floquet eigenstates show non-negligible ampli-
tude oscillations. Though tunneling is suppressed at the
stroboscopic distances z � �, 2�, . . . , over one oscillation
period an appreciable fraction of light is observed to tunnel
back and forth between the two waveguides. Such a strobo-

scopic destruction of tunneling can be viewed as a result of
destructive interference between successive LZ transitions
taking place at periodic level crossings [1,10], i.e., at the
positions z � �=4, 3�=4, . . . , where �x0 � 0. This periodic
regime, however, does not correspond to a true CDT [4].

In conclusion, we reported on the first visualization of
photonic CDT in an optical double well system which
mimics the corresponding quantum-mechanical problem
originally proposed in [3]. The two basic conditions for the
observation of CDT, namely, quasienergy crossing and
absence of amplitude oscillations of the degenerate
Floquet doublet, have been experimentally demonstrated.
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FIG. 5. Measured fluorescence light pattern, and correspond-
ing photon density j �x; 0; z�j2 predicted by Eq. (1), in curved
waveguide couplers corresponding to (a) breakup of quasienergy
crossing [point 4 in Fig. 2(c)], and (b) stroboscopic suppression
of tunneling [point 5 in Fig. 2(c)].
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