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We give recursive formulae for the exact removal of the contribution of the center-of-mass spurious
states from the fixed-spin and parity nuclear level density found in shell-model calculations, provided the
total level density for restricted configurations is known. The method is valid for a large class of problems
using a harmonic oscillator basis. Using our earlier methods based on statistical spectroscopy that utilize
the centroids and widths for a restricted class of fixed-spin configurations, such as N@! excitations, one
can calculate very accurately level densities free of spurious states. The approach is applicable to other
fermion and boson systems trapped by an oscillator potential.
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Cross sections of nuclear reactions at energies of astro-
physical interest are usually calculated with the Hauser-
Feshbach method. This requires exact knowledge of level
densities for certain spin and parity in the Gamow window
of energies around the particle threshold [1]. Level den-
sities are important in many applications. At not very high
excitation energy, the growth of the level density reflects
the interplay of interactions inside the system; the energy
variation of the level density may indicate the phase trans-
formations smoothed out in finite systems: pairing quench-
ing in nuclei [2] and small metallic particles [3], or
magnetic effects in small quantum dots [4]. The correct
reproduction of the level density helps in recognizing the
regular or chaotic nature of spectral statistics in nuclei [5]
and quantum dots [6]. Similar questions arise in other
mesoscopic systems, such as atoms in traps [7] and con-
densed matter microstructures [8].

Recently, we developed a strategy [9,10] of calculating
the spin- and parity-dependent shell-model level density.
The main ingredients are (i) extension of methods of
statistical spectroscopy [11–13] by calculating the first
and second moments for different configurations at fixed
spin (the use of conventional approaches with the spin-
cutoff factors is also possible [13]), (ii) exact decomposi-
tion of many-body configurational space into classes cor-
responding to different parities and numbers of harmonic
oscillator excitations, (iii) development of new effective
interactions for model spaces of interest starting with the
G-matrix [14] and fixing or fitting monopole terms or/and
linear combinations of two-body matrix elements to ex-
perimental data, and (iv) an accurate estimate of ground
state energy using the exponential convergence method
(ECM) [15,16]. Other methods of choice [17–20] calculate
the density of states and later use approximations to extract
the level density, with its spin and parity dependence.

One of the problems on the way to the reliable level
density, as well as in shell-model calculations in general, is
that of spurious (excited) center-of-mass (c.m.) states.
Calculations of nuclear density and momentum distribu-

tion also require accounting for admixtures of c.m. motion
[21,22]. Many applications of magnetic traps or optical
lattices are based on the coupling of c.m. motion with
intrinsic many-body excitations. Modern experiments on
cooling of atoms, molecular association, study of many-
body effects, phase transitions, scalability for quantum
control and information, and decoherence rely on the
relation between c.m. and intrinsic dynamics, see for ex-
ample [23–25].

As a rule, the classification of states in terms of the
harmonic oscillator N@! excitations is applied. The re-
striction to particular classes of configurations is necessary
to eliminate the contribution of spurious c.m. states. In
Ref. [10], we showed how one can use this approach to
approximately exclude the spurious states for low excita-
tion energies. Here, we describe a more general method of
exact removal of the c.m. spurious states from the level
density for a certain class of N@! excitations (or combi-
nations of them). This method uses the recursive tech-
niques similar to that of Ref. [26], where, however, all
spins were mixed together.

As a prerequisite, one needs to find the level density for
all the states (including the spurious one) for several
classes of N@! excitations and their combinations.
Although the shell model cannot give an exact solution
of the many-body problem, its modern versions with good
effective interactions are reliable for nuclei in the sd� pf
model space, and the area of applicability is constantly
growing, both due to the computational progress and to
new physical approaches. It is expected that �0� 2�@! and
�1� 3�@! will be soon feasible for the sd� pf region of
high interest in nuclear structure and astrophysics. For
certain parity, one needs to know the nonspurious level
density �� at a given excitation energy E, spin J, and a
combination of N, �N � 2�, . . ., �N � 2M� harmonic oscil-
lator excitations,

 ���E; J; �N� � �N � 2� � � � � � �N � 2M�� 	 ���E; J�MN
(1)
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(in practice, N 
 0 for natural parity states and N 
 1 for
unnatural parity states). It is well known [27,28] that, for a
complete set of N@! oscillator excitations taken as a
configurational basis, the eigenfunctions of the many-
body Hamiltonian (including only relative kinetic energy
[29]) can be exactly factorized into the product �CM�int of
the c.m. and intrinsic functions,

 H�CM�int 
 �CMH�int 
 E�CM�int: (2)

For removing the c.m. spurious components of the low-
lying states, the Lawson method [30] is frequently used
that adds to the actual Hamiltonian a shifted c.m.
Hamiltonian multiplied by a positive constant �,

 H0 
 H � �H CM 	 H � �
��
HCM �

3

2
@!

�
A
@!

�
: (3)

Here, the energies are expressed in units of @!, and
H CM�CM 
 AN�CM, where �CM is the wave function
describing the N@! c.m. excitations. Reasonably large

values of � can be used to filter out the spurious wave
functions [31,32]. However, this method is not very useful
for calculating the nonspurious density of states with the
aid of statistical spectroscopy because �HCM would dis-
tort the higher moments of the Hamiltonian.

Considering the complete set of N@! excitations, one
can show that the dimensions D��J;N� of the nonspurious
subspaces for given total spin J can be calculated using the
recursive formula

 D��J;N�
D�J;N��
XN
K
1

XK;step2

JK
JKmin

XJ�JK
J0
jJ�JK j

D��J0;N�K�:

(4)

This is a logical identity similar to that used in Ref. [26],
but with account of possible spins of the set of excitations.
One can check the validity of Eq. (4) by inspecting the
factorized classes of eigenstates in a particular case, say
N 
 2,

 ��J;N
 2�: �CM�J
 0;N
 0��int�J;2�; ��CM�1;1��int�J0;1��J; ��CM�2;2��int�J0;0��J; �CM�0;2��int�J;0�:

(5)

Since the c.m. wave function is symmetric with respect
to particle permutations, the intrinsic wave functions are
assumed to be constructed according to appropriate statis-
tics; therefore, the method should work for bosons as well.
Note that the N � K 
 0 subspaces are always nonspuri-
ous, i.e., ���E; J; 0� 
 ��E; J; 0�. Consequently, the non-
spurious level density for given J and N is defined by a
similar formula [33]:

 ���E; J; N� 
 ��E; J;N�

�
XN
K
1

XK;step 2

JK
JKmin

XJ�JK
J0
jJ�JK j

���E; J0; N � K�;

(6)

where E is the total energy. As an example, we consider the
case J 
 2 and N 
 1 that gives

 ���E; 2; 1� 
 ��E; 2; 1� �
X3

J0
1

��E; J0; 0�: (7)

Figure 1 shows the components of Eq. (7) for 20 parti-
cles (20Ne) in the s� p� sd� pf model space (the WBT
interaction [34] was used). The exact level density can be
obtained by diagonalization of Hamiltonian (1) with� 
 5
shifting the spurious contribution to higher energies
(around�10 MeV in Fig. 1). For comparison, Fig. 2 shows
the effect of subtracting the second term in the r.h.s. of
Eq. (7) from the first term. The result is the l.h.s. of Eq. (7)
that exactly reproduces the nonspurious level density cal-
culated with the Lawson procedure.

Assuming that one knows the spurious level densities for
different J0 and different combinations of N, �N � 2�, . . .,
�N � 2M� excitations, and the nonspurious level densities
forN, �N � 2�, . . ., �N � 2M� K� excitations (K > 0), we
come to the total nonspurious level density in the form

 ���E; J�MN 
 ��E; J�MN

�
XN�2M

K
1

XK;step 2

JK
JKmin

XJ�JK
J0
jJ�JK j

���E; J0�MN�K; (8)

with the condition that, if �N � K�< 0, then
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FIG. 1. Different contributions to the level density for 20
particles in the s� p� sd� pf model space, as described by
Eq. (7) (see text for details).
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���E; J0�MN�K 
 ���E; J0�MN�2�K. In Eq. (8), we use for
the total level density � the same abbreviation as in
Eq. (1) for ��.

As an example, we take the particular case J 
 2, N 

0, and M 
 1, when the recursion is relatively short,

 ���E; 2�10 
 ��E; 2�10 �
X3

J0
1

���E; J0; 1�

�
X2;step2

JK
0

X2�JK
J0
j2�JK j

��E; J0; 0�: (9)

Figure 3 shows separately (up to the signs) the three terms
on the r.h.s of Eq. (9) for 10 particles (10B) in the s� p�
sd� pf model space, with the same WBT interaction. The
exact level density can be obtained by the direct diagonal-
ization of the Hamiltonian (1) with � 
 10 that shifts the

spurious contribution due to the second term on the r.h.s. of
Eq. (9), ���E; �; 1�, to higher energies (around�120 MeV
in Fig. 3), and the third term on the r.h.s. of Eq. (9),
���E; �; 0�, to around �190 MeV in Fig. 3. Here, ‘‘*’’
stands for any necessary value J0 in Eq. (9). We see the
significant difference at low energies between the nonspu-
rious density (� 
 10, continuous line) and the density
that mixes spurious and nonspurious states (labeled by
dashes and pluses in Fig. 3). Figure 4 shows the effect
of subtracting the second and third terms in the r.h.s. of
Eq. (9) from the first term. The result is the l.h.s. of Eq. (9)
that exactly reproduces the nonspurious level density cal-
culated with the Lawson procedure.

In the shown examples, we used the exact shell-model
level density for all necessary combinations of �N �
2M�@! excitations. It was demonstrated that one can use
our methods [9,10] to obtain the same level density with
high accuracy. An important ingredient in these calcula-
tions is the accurate knowledge of energy for the ground
and yrast states in order to identify the excitation energy of
the system and thresholds in the spectrum for all spins J0 of
interest. These energies are calculated either by the direct
diagonalization in the corresponding shell-model space, or
by using the ECM [15,16] that provides these energies with
an error of about 100 keVafter appropriate truncation up to
less than 1% of total dimension. As was shown in [15], the
exponential extrapolation based on generic properties of
complicated (‘‘chaotic’’) states correctly accumulates the
pressure of excluded highly excited configurations on more
regular ground and yrast states. The yrast energies are used
in the expansion in terms of finite range Gaussians [9] to
enforce the correct threshold behavior of the level density.

Since the number of partitions grows fast, in practice the
calculation of fixed-J centroids and widths is not an easy
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task, and the required computational effort is comparable
with that in the shell model for yrast energies. However,
these calculations can be parallelized as shown by recent
progress; further efforts are underway. As shown in [10],
the use of the energy-dependent spin-cutoff factor is also a
possibility, even if less accurate. The computational errors
can accumulate in the process of using the recurrent rela-
tions. Although it is hard to estimate this uncertainty, our
experience shows that an error in individual level densities
does not exceed 10% and is even less for Nmax � 3.

In conclusion, we presented a new way for calculating
the spin- and parity-dependent level densities in finite
quantum many-body systems by proposing an exact
method of removing the spurious c.m. contribution. This
method requires knowledge of the level densities with fixed
spin and parity for different combinations of N @! excita-
tions. We worked out two examples with ten and 20
particles in the first few major harmonic oscillator shells
and demonstrated that the method works practically ex-
actly. The conventional Lawson method can compete with
this procedure only if it allows to filter out the spurious
contributions with a relatively small value of �. This is
more plausible for low-lying states but not for the level
density. Although our primary purpose was in applications
to nuclear reactions of astrophysical interest and nuclear
structure, the same approach could be applied to other
many-fermion and many-boson systems trapped by a har-
monic oscillator potential, provided that the trap is har-
monic and one can use the same oscillator frequency for
the basis expansion and for the trapping potential.
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