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We discuss how to obtain the nonrelativistic limit of a self-consistent relativistic effective field theory
for dynamic problems. It is shown that the standard v/c expansion yields Galilean invariance only to first
order in v/c, whereas second order is required to obtain important contributions such as the spin-orbit
force. We propose a modified procedure which is a mapping rather than a strict v/c expansion.
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Introduction.—Since the development of the special
theory of relativity classical physics is viewed as its non-
relativistic limit for c, the velocity of light, going to infinity
(or correspondingly, considering all relevant velocities to
be much smaller than c). In quantum mechanics, Dirac’s
theory of the electron carrying spin 1/2 has as its non-
relativistic limit the Pauli equation.

Since then, the problem in obtaining a nonrelativistic
limit of a theory has enjoyed permanent interest. Many
physical systems are on the borderline between relativistic
and classical physics, determined by the velocity and/or the
size of the system. Prominent examples are heavy atoms
and nuclei, where the spin-orbit force is a relativistic effect
and shows that, although a nonrelativistic description is in
general easier to handle, relativistic effects cannot always
be neglected. Understanding the transition from relativistic
to nonrelativistic physics while maintaining the traces of
relativistic effects is therefore of utmost interest.

One of the first, and still most prominent, attempts to
handle this transition in a systematic way was the Foldy-
Wouthysen transformation [1] using a canonical transfor-
mation to obtain two equations with two components, one
of which becomes the Pauli equation in the nonrelativistic
limit. An alternative method is related to group contrac-
tions [2], where one discusses under which conditions a
group can be contracted to another one, involving non-
singular transformations. In particular, the Lorentz group
SO(3, 1) can be contracted to the Galilei group, taking the
limit ¢ — oo and neglecting corrections of the order of (%)?.
On the level of group generators this contraction procedure
is direct, but on that of representations it is not as trivial [2].
As we shall see, this is the case in self-consistent effective
field theories involving fields with a spin 1/2 representa-
tion. In recent years, several groups discussed similar
problems [3-5] for the Maxwell and Dirac equations.
They showed that several nonrelativistic limits may exist
in these cases.
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In the present Letter, we focus on the nonrelativistic
limit of covariant nonlinear self-consistent effective field
theories, i.e., those based on density functionals. These
cases are to be distinguished from other effective field
theories which rely on a straightforward expansion (see,
e.g., [6]) and for which the following considerations do not
apply. Realizations of self-consistent field theories include,
e.g., the model by Duerr [7], Heisenberg’s nonlinear spinor
theory [8], the Nambu—Jona-Lasinio (NJL) model [9], and
effective ¢* theories [10]. In nuclear physics, the relativ-
istic mean-field (RMF) model [11,12] and the Skyrme-
Hartree-Fock (SHF) approach [12] are typical examples.

In this Letter, we will discuss the link between such a
nonlinear relativistic theory and its nonrelativistic counter-
part. It is found that a straightforward nonrelativistic re-
duction of a covariant ansatz up to (v/c)? yields a result
which violates Galileian invariance. We will develop and
justify a nonrelativistic mapping going up to (v/c)? that
leads to the correct Galilean-invariant counterpart.

Nonrelativistic reduction. —

The goal.—A relativistic effective field theory expresses
the configuration in terms of Dirac four-spinor wave func-
tions ¢, for each state . For the further developments, it is
useful to express it explicitly through upper and lower two-
spinor components as

(u)
Vo = (% ) ()
Pa
For means of simplicity and lucidity we choose a simple
covariant self-consistent effective field theory involving
point couplings between its degrees of freedom, i.e., the
4-component spinors. It reads
c c
£c:£free+§eg+?ve,u9'u» (2)
with
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with y,, = (v, ) the four-vector of Dirac matrices [13].
The relativistic functional appears simple because the ki-
netic and spin-orbit terms are implicit in the scalar and
vector densities, as we shall see. For simplicity of notation,
we will drop the index label « in the following, identifying,
e.g., the scalar density with o, = ¢ and similarly for all
other densities and currents.

A key point in such approaches is, of course, correct
normalization of the densities and consequently the wave
functions. This implies

f Priygp =1 @)

to guarantee invariance under Lorentz transformations.
This may be surprising, since it involves the zeroth com-
ponent of a four-vector, but is inevitable to counter the
relativistic contraction of the purely spatial volume ele-
ment d°r [13]. We will see that this is the key problem with
straightforward expansions and at the same time the key to
the solution.

The goal is now to obtain a nonrelativistic functional
based on the densities (6) from the relativistic parent func-
tional (2) in a nonrelativistic limit. Solutions in the
positive-energy branch (particlelike) are distinguished by
a dominance of ¢ over ¢@. The strategy is thus to
eliminate ¢@ and identify the upper component with the
classical two-spinor wave function, @™ < ¢ which
should obey the normalization condition

fd3r|qo(°1)|2 =1 (5)

We can thus express  in terms of ¢, Inserting that into
the coupling Lagrangian density (2) should produce the
desired limit.

In the course of obtaining the nonrelativistic limit we
expect to formulate the nonrelativistic counterpart in terms
of the following densities and currents:

p= leo“l T ZIVsoCl ? (62)
Z[«f”(v X o)g — (VX aedted]  (6b)

- EZ[«);” Vei — (Ve ed], (60)

o= Zgocwagofxl, (6d)
where p, 7, and J are time even while j and o are time odd.

Note that time-even and time-odd terms appear in particu-
lar combinations, a feature which is crucial to render the
functional invariant under Galilean transformations [14].

Problems with v/c expansions.—Nonrelativistic limits
are usually obtained by straightforward expansion in or-
ders v/c or p/m, respectively, e.g., in the Foldy-
Wouthuysen transformation ([13], for the nuclear case
see [11,15]). We briefly review the steps from [11]. One
starts from the relativistic equations of motion, for the
present model derived from the Lagrangian (2)

0= (iy*a,
S = —C0Qs

-m+ S+ )/'“V‘u)iﬁa, (7a)
V,=1¢,0p (7b)

with the self-consistent scalar and vector potentials S and
V., the latter decomposing as

V;L = (VO’ _V) = (CUQO’ _Cve)' (8)

We insert the decomposition (1) and solve the lower-

component equation for ¢@. Keeping only terms up to
order p/m yields

¢@ =Byo - (p— V), (9a)
1 1

By=——7—~—, 9b
O 2m+S— Vo 2m (°b)
where p = —iV. The approximation By, = 1/m ignores
the density dependence in Bj. It suffices for the present
studies. The form (9) violates the normalization (4) to
second order in p/m. The procedure of [11] restores
(ortho-)normalization at operator level by first imposing

the relativistic normalization (4) up to (p/m)?

1= /d3rgo(””[l +Tle®, T =Bo-(p- VP

(10)

We introduce ¢ so as to recover the nonrelativistic
normalization (5). Thus we identify

1= fd3r W1 + ’j'/]l/z[l + j’]l/zgo(”).

g 2'g
¢lclh‘ €D(cl)

We expand in second order of p/m and obtain
oW =[1 3T (11)

which, together with relation (9a), provides a complete
description of ¢ in terms of @Y up to order p/m. Using
the relation (6 - A)(6 - B) = A - B — iA - (6 X B) yields

~

T

B =P-V+ip-V)-[6xpB-V)] 12

We insert Egs. (8), (11), and (12) into expressions (3) for
the relativistic densities and finally obtain up to order

(p/m)?
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0, =p—2Bjlr—V-J—c,e-2j+VX0o)+c;e°p]
(13a)

Qo =p. @=2By(j—c,ep+iVXo). (13b)

The same relations are obtained when going through the
Foldy-Wouthuysen transformation up to second order.
Note that the spatial part of the vector density @ is at least

of first order such that the correction from 7~ would be of
third order and is discarded. The result is correct for sta-
tionary states where all time-odd densities and fields van-
ish, i.e., where j = 0, o = 0, and V = 0. The expressions
(13) when inserted into the Lagrangian (2) produce a
serious defect: the emerging nonrelativistic Lagrangian is
not Galilei invariant. The Lorentz invariant scalar density
p, does not translate to a Galileian invariant expression and
the same happens for the combination @3 — @*. Correct
expressions should form the Galileian invariant combina-
tions p7— j*> and pV-J + j- (VX o) as we will see
later.

In order to elucidate the problem, we consider the trans-
formation properties for the simple case of an explicit
boost of the whole system. Let us start with a well-checked
situation, a stationary state for which j = 0 and o = 0. We
boost the system by a constant velocity u (in units of ¢). All
quantities in the boosted system will be distinguished by a
prime. The normalization (4) becomes in the boosted frame

1= [a&r ’=fd3r\/1—u2790 .
f % V1 —u?

Note the transformation of the volume element exactly
countering that of the density ©@,. The volume dilatation
factor is negligible to order u' but contributes in second
order. The above nonrelativistic expansion to second order
had violating terms at that order. The example shows that
the mistake lies in neglecting a second-order correction of
the volume element in the normalization condition.

Map instead of expansion.—The previous discussion
shows that a straightforward nonrelativistic expansion
with all kinetic contributions is consistent only up to first
order p/m (or boost velocity u, respectively), while the
crucial relativistic corrections to a classical Schrodinger
equation emerge from second-order terms, namely, spin-
orbit coupling and effective-mass terms. These require a
special handling of the normalization condition like in the
example of Eq. (14). We thus leave the straightforward
paths of p/m expansion to now aim at a generalized
mapping of the relativistic functional into a nonrelativistic
one, trying to incorporate all second-order effects.

The key point is accounting for the relativistic volume-
element compression as in Eq. (14). To deal with arbitrary
nonstationary situations we need to allow a boost velocity
field. Thus we modify the normalization condition (4) to
display explicitly the compression factor with respect to
the local boost velocity, which in turn is expressed in terms

(14)

of the classical densities and currents:

| = /d3r,/1 —w2(r)e,

ur) =2 = %O S Vp+ivx a>. (15b)
Qo 1Y 2

(15a)

The expansion (11) thus is slightly modified to the map
o =[1— %T]go(d)(l + %uz) ~[1— %T + %uz]go(d).
(15¢)

Things now proceed as before, but the term o« u“ cancels
the unwanted one in @, and adds a desired one in @,. This
now leads to the consistent result

2B?
Qs=p—7°[pT—j2—pV'J—j-(VXU)

2

—i(v x 0)2} (162)
2 2
Qo=p+%<j—Vp+%V><0'>, (16b)
p
0 =2By(j — Vp + %V X o). (16¢)

The scalar density shows the wanted Galilean-invariant
combinations and the vector density reproduces the correct
invariance property, @,0* = p§ — @* = p?, up to terms
of second order, of course. We thus insert the mapped
scalar and vector densities (16) into the interaction
Lagrangian density (2), getting (up to second-order)

Gy +c,

L. = 3

P~ 2Bl —
[PV 3+ (VX )] - (VX a)Z}. (17)

That result is manifestly Galilean invariant.

It has the same form as the basic version of the Skyrme
Hamiltonian density [12] that is being employed for the
description of finite nuclei. This comes as no surprise,
since the covariant Lagrangian that we started with,
Eq. (2), consists of the basic terms of the Lagrangian of
the point-coupling (PC) variant of the RMF model for
nuclear structure, RMF-PC [16]. Both SHF and RMF-PC
are formulated in terms of point couplings of spinors and
thus display this close relationship. This relation between
covariant models and their Galilean-invariant counterparts
is of importance when one analyzes, for example, spin
excitation mechanisms in nonrelativistic time-dependent
Hartree Fock employing the Skyrme functional [17].

Compared with the commonly used Skyrme functionals,
however, there is one additional term « (V X o) which is
an allowed term in the Skyrme functional, but usually
neglected. There is, however, no gradient term o« pAp
which is mandatory for the description of finite-size sys-
tems. That is no surprise because we had started from a
simplified Lagrangian without gradient terms. The more
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complete model would also include terms such as p,Ap;
and p, A p#, whose expansion proceeds quite similarly and
in the nonrelativistic limit yields gradient terms. There is a
subtle difference, though: the nonrelativistic mapping
would also produce gradient kinetic terms like p A7, which
are neglected assuming that the gradient correction as such
is small and second-order relativistic corrections to it are
negligible. The counter argument is that there are two quite
different notions of smallness involved here that may not
be combined.

Conclusion.—We have studied the nonrelativistic limit
of a self-consistent relativistic theory with the aim of
recovering a minimum of relativistic effects, the spin-orbit
force, together with Galilean invariance in the resulting
nonrelativistic theory. Note that Galilean invariance re-
quires keeping all time-odd terms, which play a crucial
role in the formulation of dynamics. This applies to the
spatial components of the relativistic vector density as well
as to the current and spin densities in the nonrelativistic
domain. Previous derivations rarely studied the full dy-
namical case.

The procedure started out with a straightforward v/c
expansion, which encountered inconsistencies, because the
spin-orbit term appears only in second order of v/c while
Galilean invariance comes out correctly only to first order.
The key finding is that a strictly nonrelativistic theory is not
easily compatible with the appearance of a spin-orbit term.
To be more precise: for relativistic effective field theories,
based on density functionals, it is not possible to derive a
sufficiently complete nonrelativistic theory by mere expan-
sion and order counting. Instead the more general concept
of a nonrelativistic mapping is needed, namely, to derive an
effective nonrelativistic theory which includes as many
features of the given relativistic theory as desired.
Starting from the simple consideration of Lorentz contrac-
tion of the spatial volume element, we have derived such a
mapping for a covariant self-consistent model. This map-
ping manages to provide a manifestly Galilean-invariant
theory which correctly incorporates the spin-orbit and
effective-mass terms and, if one starts with the RMF-PC
model in nuclear physics, merges into the widely used
Skyrme-Hartree-Fock approach when neglecting the in-

volved density dependences of the spin-orbit and
effective-mass term. Extensions of the scheme developed
here are in progress.
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