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If the photon possessed a nonzero charge, then electromagnetic waves traveling along different paths
would acquire Aharonov-Bohm phase differences. The fact that such an effect has not hindered
interferometric astronomy places a bound on the photon charge estimated to be at the 10�32e level if
all photons have the same charge and 10�46e if different photons can carry different charges.
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In 2006, the Particle Data Group [1] listed only four
bounds on the photon charge, compared with 15 on the
photon mass. The photon’s electrical neutrality and its
masslessness are both quite important to our understanding
of electrodynamics. We would therefore like to have the
best bounds possible for both these quantities, yet it seems
that significantly more work has gone into constraining
the photon’s mass. In some sense, this is not surprising,
since a nonzero photon mass is much easier to accommo-
date theoretically. However, a significant improvement
over the currently quoted bounds on the photon charge is
possible, if quantum interference effects are considered.

There are some crucial differences between a photon
mass and a photon charge. A photon mass parameter has
meaning even at the classical level, where it determines the
gap in the dispersion relation. A photon charge, on the
other hard, is intrinsically quantum mechanical in nature.
The charge of a propagating wave is crucially tied to the
decomposition of that wave as a collection of quantized
photons. Moreover, while there are at least three viable
dynamical models for giving mass to an Abelian gauge
field (Proca, Higgs, and Stueckelberg), it is much more
difficult to construct a consistent model of charged gauge
bosons. The only straightforward way to make gauge fields
charged is to use a non-Abelian gauge group, but this
requires the existence of a nontrivial multiplet of vector
bosons. Related to this is the fact that electric charge is
observed to be quantized in units of the proton charge e (in
a way that mass is not); yet the present limits on the photon
charge are already many orders of magnitude smaller than
e.

The absence of a complete theory describing charged
photons can complicate the task of placing bounds on any
such putative charge. It is possible to place bounds on the
photon mass using dynamical stability conditions [2] and
observations of magnetohydrodynamic waves [3], as well
as tests with static fields [4]. These tests are possible
because we can interpret the results of our observations
in the context of a well-defined theory—although there
may be unexpected model dependences in the conclusions
[5]. Without any equivalent theory describing the photon
charge, we must rely on rather different techniques. For

example, while positing the existence of a photon charge
does tell us things about how photon propagation must be
affected, it does not tell us anything about how static
electromagnetic fields will be modified.

Any bound placed on the photon charge is going to be
subject to some level of uncertainty, but some measure-
ments are more robust that others. A very simple-minded
experiment involves observing the change in a photon’s
energy between a source and detector placed at different
voltages. Other measurements involve the deflection of
photons by magnetic fields [6–8] and the associated time
delays [9,10]. The best trustworthy bound derived by these
methods is at the 4� 10�31e level [8]. (A previously
quoted better bound in [9] is considered to have been in
error.) Moreover, the bounds are actually 2 orders of mag-
nitude better if both positively and negatively charged
photons are assumed to exist.

Indirect searches for the effects of a photon charge are
also possible. Measurements of the anisotropy of the cos-
mic microwave background (CMB) can be used to place
somewhat model-dependent bounds on the photon charge
[11,12]. If there are no cancellations between different
species, and a nonzero photon charge disturbed the overall
charge neutrality of the early universe, there would be
signatures in the CMB. With these assumptions, a limit
can be placed on the photon charge at the 10�35e level.

We shall suggest a more subtle direct test, which is
fundamentally quantum mechanical and based on the
Aharonov-Bohm effect. Charged particles moving along
different paths through a magnetic field pick up different
phases, and the observed coherence of photons from dis-
tant astrophysical sources will allow us to place bounds on
this effect and hence on the photon charge. Other sensitive
interferometric techniques, such as intensity interferome-
try, might also be useful for setting bounds.

The bounds we shall place are based on observations of
photons that have traversed cosmological distances. These
photons can be very precise probes of novel phenomena in
electrodynamics, the immense distances over which they
travel magnifying miniscule effects. A tiny change in how
electromagnetic waves propagate can, after millions of
parsecs, give rise to a readily observable effect. The strat-
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egy of observing radiation from very distant sources has
already been used to place extremely stringent bounds on
photon birefringence [13–15] and dispersion [16].

Our bounds should not depend in any crucial way on the
intricate details of the charged photon dynamics. We shall
assume only that there exists an effective Lagrangian gov-
erning the propagation of a single photon, and that the
coupling of the photon to the external electromagnetic field
takes the form LI � �

q
c v�A

�
ext. The photon’s charge is q,

and v� � �c; cv̂� is its four-velocity. This Lagrangian is
essentially unique, once we specify that there must be a
potential energy term �qA0 and demand conventional
Lorentz transformation properties. The equation of motion
derived from LI is the Lorentz force law.

From LI, we can calculate the additional phase that a
charged photon picks up as it travels, relative to a conven-
tional uncharged photon. In the eikonal approximation, in
which the photon’s deflection from a straight line path is
neglected, the phase is

 � �
1

@

Z t

0
d�LI; (1)

where we have taken the time interval of the photon’s flight
to range from 0 to t. Neglecting the contribution of the
electrostatic potential and taking the total distance traveled
to be L, the phase is

 � �
q
@c

Z L

0
d ~‘ � ~Aext: (2)

What we can observe is the phase difference between
photons arriving at different points. In practice, this is done
all the time, and it is the basis of astrophysical interferom-
etry. We consider two telescopes, separated by a baseline d.
They collect data from a source lying approximately in the
plane perpendicular to the baseline. The observed phase
difference due to a possible photon charge is equal to the
difference between two phases �1 and �2 of the form (2).
Neglecting a miniscule contribution proportional to the
integral of ~Aext along the baseline, the phase difference is
�� � �q=@c, where � is the magnetic flux threading
between the two lines of sight. This is the standard
Aharonov-Bohm phase difference, and it is independent
of the photon energy.

To estimate the flux integral, we must know something
about the relevant magnetic fields. For randomly oriented
fields, with typical magnitude B and correlation length �C,
the flux � depends on Bd

���������
�CL
p

. To get an idea of the
accompanying numerical constant, we assume that the line
of sight passes though L=�C magnetic field domains, each
of equal size. In each domain, the field is randomly ori-
ented along one of six cardinal directions. One third of the
domains contribute to the total flux, behaving like a ran-
dom walk. The mean distance from the origin in this walk
after L=3�C steps is

���������������������
2L=3��C

p
, and with an extra factor

of 1
2 corresponding to the triangular geometry of the

threaded region, the total flux is

 � �

���������
L�C
6�

s
dB: (3)

An Aharonov-Bohm phase could upset interferometric
measurements. In order for interferometry to be possible,
photons arriving at different telescopes must have definite
phase relations. A �� of order 1 would destroy this
necessary relation. (While there are phase uncertainties
in real measurements due to uncertainties in telescope
positions, these have very different characteristics and
can be distinguished from an Aharonov-Bohm phase.
Position uncertainties lead to phase differences that are
proportional to the photon frequency, and they have a
predictable dependence on the direction of observation,
whereas the Aharonov-Bohm phase is frequency indepen-
dent and varies randomly with different pointing direc-
tions. Telescopes are calibrated by observing reference
sources, but as long as these are relatively nearby, the
bounds will not be significantly affected, since the
Aharonov-Bohm phase is related to the distance; there is
no problem with this for the telescope arrangement dis-
cussed below [17].) So our ability to study objects at a
distance L with interferometers of baseline d limits the
photon charge to be smaller than
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It is worthwhile to contrast this bound with the one that
can be derived from measurements of photon deflection by
a magnetic field. That bound also depends on the transverse
magnetic field along the line of sight. For a constant field B
and line of sight L, with photons of energy E and energy
spread �E, the bound is formulated in terms of the angular
deviation �� of the different-energy photons as
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e
<
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: (5)

(If astrophysical field configurations are used, BL would
again be replaced by something of order B

���������
L�C
p

.) It is also
possible, when using photons of single energy in the labo-
ratory, to use a time-dependent magnetic field and then
look for a corresponding time-dependent angular devia-
tion. In either case, the deflection decreases linearly with
the photon energy, since higher-energy photons possess
more momentum and are thus less deflected by the
energy-independent Lorentz force. The Aharonov-Bohm
phase is independent of energy, although it is still most
advantageous to work with low-energy photons, because
their phases can be determined most accurately. The
Aharonov-Bohm phase �� also depends unavoidably on
@, while the bound (5) can evidently be written in an
@-independent form. There is therefore no intrinsic rela-
tionship between the bounds obtained by the two different
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methods, and it should be no surprise if the experimental
bounds available via the two methods differ by orders of
magnitude.

The greatest uncertainty in our photon charge bounds
will come simply from a limited understanding of extra-
galactic magnetic fields. The best bounds on extragalactic
fields come from observations of the Faraday rotation of
photons moving through putatively magnetized plasmas
[18–20]. The precise bounds one may derive from the
Faraday observations depend on the assumptions one
makes about the large scale structure of the field and
particularly on �C. A bound of B & 10�8 G is reasonable,
while cosmic ray and high-energy photon data from the
source Centaurus A suggest that 10�8 G may also be a
lower bound for the magnetic field strength in the relative
vicinity of our Galaxy [21].

To be conservative, we shall assume a rather lower value
of the extragalactic magnetic field. Cosmic ray data sug-
gest that B

������
�C
p

may be at the 10�10 G Mpc1=2 level [22],
although this still depends on assumptions about the dis-
tribution of ultra-high-energy cosmic ray sources. A pos-
sible higher density of sources would yield a higher value
of the field.
B

������
�C
p

is an essentially universal (if somewhat uncertain)
quantity, but the parameters d and L that enter into (4) are
experimental variables. The longest baseline d available is
that of the Very Long Baseline Interferometry Space
Observatory Program (VSOP) satellite experiment, for
which d > 3� 109 cm. Using radio telescopes on Earth
in combination with one on the Highly Advanced
Laboratory for Communications and Astronomy satellite,
VSOP imaged active galactic nuclei out to redshifts z > 3
[17]. For objects this distant, the effects of cosmological
expansion could not be ignored in any precise treatment.
However, for obtaining conservative order-of-magnitude
bounds on q, this level of precision is not overly important.
Excellent bounds on the photon charge can be derived
merely from taking L� 1 G pc, which is roughly half an
order of magnitude smaller than the Hubble distance and
corresponds to a redshift less than 1.

Taking B
������
�C
p

� 10�10 G M pc1=2, d � 3� 109 cm,
and L � 1 G pc, we find our bound on the photon charge
to be

 

jqj
e

& 10�32; (6)

which is an improvement over all previous direct bounds
that do not consider photons with multiple opposing
charges. There is even a small improvement relative to
the erroneously stated bound from [9].

As previously mentioned, it has also been suggested that
there may exist photons with positive and negative (or
positive, negative, and zero) charges. If this is the case,
the CMB bounds would not apply, since the photon gas
filling the early universe would be charge neutral. The
coherence of observed photons places bounds on this pos-

sibility as well. However, there are additional uncertainties
if particles with different charges can interfere (and no
pairs of like-polarized photons have ever been observed
not to interfere). Although the phase difference for two
particles of equal charge is always gauge invariant, for
particles with different charges it is not. Therefore, the
gauge in this scenario must be specified. It is no surprise
that gauge invariance is destroyed, since interference be-
tween dissimilarly charged particles violates local charge
conservation and charge superselection. The gauge fixing
condition should arise naturally in the full theory describ-
ing this phenomenon, just as the Lorenz gauge condition
@�A� � 0 arises if we introduce a Proca mass term. Yet
without a complete theory, the precise form of the gauge
condition is unknown.

Nevertheless, it is possible to place an order of magni-
tude bound on the charge, provided the large scale structure
of ~A is not modified. In a magnetic field domain, the typical
vector potential is B�C=2. Conservatively assuming that
the potential falls back to zero at the edge of the domain,
the net contribution to the phase for a photon of charge q is

� �
�����
L

6�

q
�3=2
C qB
@c , with the same factor of

���������������������
2L=3��C

p
as

before. The phase difference for photons of charges q
and �q is twice this, even if the photons traverse exactly
the same path. Because of this, the bounds are improved by
a factor of O�d=�C�. �C is more difficult to determine than
B2�C, but choosing a relatively conservative value of
100 kpc gives an improvement of O�10�14�, or a bound of

 

jqj
e

& 10�46 (7)

if multiple charges are possible. This is a major improve-
ment over previous bounds.

Moreover, the bounds (6) and (7) may still be relatively
conservative. They assumed what might be too low a value
for the extragalactic magnetic field and a length scale L
corresponding to a relatively modest redshift. Perhaps most
importantly, the bound assumes that only a phase decoher-
ence ��� 1 is ruled out by the availability of interfero-
metric data. However, we feel that this level of
conservatism is warranted, given the uncertainties in quan-
tities such as B

������
�C
p

.
Significant improvements in these kinds of bounds on

the photon charge are possible, but only up to a certain
point. A better understanding of magnetism on extragalac-
tic scales will provide more secure (but not necessarily
numerically tighter) bounds on q. More careful analyses,
taking into account the expansion of the universe, could
also extend the reach in L, but since the dependence on L is
only as L�1=2, the gain to be had in this area is not great.
Tighter limits on the experimentally observed phase devia-
tion �� would give proportionately tighter bounds on the
charge. The largest improvements in the single charge case
might come from using longer baselines. In principle, a
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baseline of 2 AU could be possible for certain types of
interferometric measurements, and a baseline this long
would improve the bound on q by 4 orders of magnitude.

The photons observed by the VSOP experiment had
frequencies of 1.6, 5, and 22 GHz. This places the energies
of the photons from which our bound on q was derived in
the 6–90 �eV range at the time of their absorption. We
might expect, based on Lorentz invariance and charge
conservation, that the photon charge should be independent
of energy, as is the charge of other particles; however, more
exotic possibilities cannot be ruled out.

A critic might object that the Aharonov-Bohm-type
phase should not contribute to the ordinary, essentially
classical, phase that we observe in radio waves. In this
view, the novel phase would represent some kind of in-
trinsically quantum effect, one which could be observed
only if a single photon whose wave packet had been split
were recombined and then observed (as opposed to ob-
serving distinct but coherent photons at different loca-
tions). The corresponding interference effects would have
to operate entirely separately from the usual interference of
electromagnetic waves. Without a viable theory of charged
photons, we cannot definitively reject such a hypothesis;
we do, however, note that it violates the usual correspon-
dence principle relationship that connects photons with
classical waves, in which the classical and photon phases
are one and the same.

We have presented improved bounds on the magnitude
of the photon charge, derived from quantum interference
considerations. Charged photons, like other charged par-
ticles, could acquire Aharonov-Bohm phases, yet no evi-
dence for these phases has been seen in interferometry
experiments. Using emissions from distant astrophysical
sources—which are particularly useful for constraining
small deviations from conventional electrodynamics—
the fraction of the fundamental charge present on a
radio-frequency photon has been bounded at the 10�32 or
10�46 levels, depending on whether all photons carry the
same charges and provided the large scale structure of the
vector potential is unmodified.
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