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Conformally invariant systems involving only dimensionless parameters are known to describe particle
physics at very high energy. In the presence of an external gravitational field, the conformal symmetry
may generalize to the Weyl invariance of classical massless field systems in interaction with gravity. In the
quantum theory, the latter symmetry no longer survives: A Weyl anomaly appears. Anomalies are a
cornerstone of quantum field theory, and, for the first time, a general, purely algebraic understanding of
the universal structure of the Weyl anomalies is obtained, in arbitrary dimensions and independently of
any regularization scheme.
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At very high energies, such as, e.g., in the early
Universe, all of the particles can be considered as massless,
and renormalized matter models are invariant under the
conformal group. Since the Weyl transformations are the
generalization to curved space of conformal transforma-
tions in flat space, there are good reasons to anticipate the
Weyl symmetry as a symmetry of a fundamental theory
incorporating gravity [1].

On the other hand, symmetries may be broken at the
quantum level: Anomalies then appear. The cancellation of
anomalies puts severe constraints on the physical content
of a theory, as is the case with the standard model (for a
review on anomalies in quantum field theory, see, e.g., [2]).
In the case of (super)string theory, the critical dimensions
correspond to the absence of the two-dimensional Weyl
anomaly [3].

The Weyl (or conformal, or trace) anomalies were dis-
covered about 30 years ago [4,5] and still occupy a central
position in theoretical physics, partly because of their
important rôles within the anti-de Sitter/conformal field
theory correspondence and their many applications in cos-
mology, particle physics, higher-dimensional conformal
field theory, supergravity, and strings. The body of work
devoted to this subject is, therefore, considerable. A very
nonexhaustive list of references can be found, e.g., in [6–
9].

The central equations which determine the candidate
anomalies in quantum field theory are the Wess-Zumino
(WZ) consistency conditions [10]. By using these condi-
tions, the general structure of all of the known anomalies
except the Weyl ones has been determined by purely alge-
braic methods featuring descent equations in the manner of
Stora and Zumino [11,12]. Such algebraic treatments are
crucial, since they are independent of any regularization
scheme and very general. The algebraic analysis of anoma-
lies can best be performed within the Becchi-Rouet-Stora-
Tyutin (BRST) [13] formulation.

The BRST formulation for the determination of the
Weyl anomalies was initiated in the pioneering works

[14,15], with explicit results up to spacetime dimension
n � 6 and the general structure guessed in an arbitrary
even dimension. The authors of Refs. [14,15] found that
the Weyl anomalies comprise (i) the integral over space-
time of the Weyl scaling parameter times the Euler density
of the manifold plus (ii) terms that are given by (the
integral of) the Weyl parameter times strictly Weyl-
invariant scalar densities. Some of the terms from (ii) can
trivially be obtained from contractions of products of the
conformally invariant Weyl tensor, while the others are
more complicated and involve covariant derivatives of
the Riemann tensor. It was also mentioned in Ref. [15]
that an algebraic analysis of the Weyl anomalies, similar to
the Stora-Zumino treatment of the non-Abelian chiral
anomaly in Yang-Mills theory, was unlikely to exist.

Somewhat later, by using dimensional regularization,
the authors of Ref. [16] confirmed the structure of the
Weyl anomalies found in Refs. [14,15] and extended the
results to arbitrary (even) dimensions. The Euler term from
class (i) was called a ‘‘type-A Weyl anomaly,’’ while the
terms of (ii) were called ‘‘type-B anomalies.’’ Very inter-
estingly, they discovered a similitude between the type-A
Weyl anomaly and the non-Abelian chiral anomaly.
Accordingly, they hinted at the existence of an algebraic
treatment for the Weyl anomaly, featuring descent
equations.

In this Letter, we provide for the Weyl anomalies the
general, purely algebraic understanding in the manner of
Stora-Zumino that all of the other known anomalies in
quantum field theory enjoy, thereby filling a gap in the
literature.

The Weyl anomaly being a local functional, i.e., the
integral over the n-dimensional spacetime manifold Mn
of a local n form an1 at ghost-number unity gh�an1� � 1 (cf.
[17]), the WZ consistency conditions for the Weyl anoma-
lies [14,15] can be written in terms of local forms:

 sWa
n
1 � db

n�1
2 � 0; an1 � sWp

n
0 � df

n�1
1 ; (1)
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 sDan1 � dc
n�1
2 � 0; sDpn0 � dh

n�1
1 � 0: (2)

The BRST differentials sW and sD implement the Weyl
transformations and the diffeomorphisms, respectively,
whereas d denotes the exterior total derivative. Together
with the invertible spacetime metric g��, the other fields of
the problem are the Weyl ghost ! and the diffeomorphism
ghosts ��, gh���� � gh�!� � 1. The BRST transforma-
tions on the fields �A � fg��;!; ��g read

 sDg�� � ��@�g�� � @���g�� � @���g��;

sWg�� � 2!g��; sD�
� � ��@��

�;

sD! � ��@�!; sW�
� � 0 � sW!:

It should be understood, throughout this Letter, that the
space in which BRST cohomologies are to be computed
is the space of local p forms bp, that is, the (jet) space
of spacetime p forms that depend on the fields �A and
their derivatives up to some finite (but otherwise un-
specified) order, which one denotes [17] by bp �
1
p! dx

�1 . . . dx�pb�1...�p
�x; ��A��.

One unites the differentials s � sW � sD and d into a
single differential ~s � s� d, therefore working with local
total forms. The latter are, by definition, formal sums of
local forms with different form degrees and ghost numbers
� �

Pn
p�0 a

p
G�p, the total degree G being simply the sum

of the form degree and the ghost number.
Powerful techniques for the computation of local BRST

cohomologies in top form degree are exposed in Ref. [18]
and allow one to consider local total forms depending only
on a subset W of the set of local total forms, such that
~sW �W . For the general class of theories studied here,
the corresponding space W was obtained in Ref. [19].

Accordingly, denoting ~sW � sW � d and similarly for
sD, the problem (1) and (2) amounts to determining the
~sD-invariant �n� 1�-local total forms ��W � satisfying

 ~s W��W � � 0; ��W � � ~sW��W � � const; (3)

where ��W � must be ~sD-invariant.
Thanks to very general results explained in Ref. [18], we

know that the solution of (3) will take the form

 ��W � � 2! ~CN1 . . . ~CNnaN1...Nn�T �: (4)

The space T is generated by [19] the (invertible) metric
g�� together with the W tensors fW�i

g, i 2 N, whose
precise form will not be needed here. For the purposes of
the present Letter, it suffices to know that they contain the
conformally invariant Weyl tensor W�

��� and its first
covariant derivative r�W�

���. The symbol r denotes
the usual torsion-free metric-compatible covariant differ-
ential associated with the Christoffel symbols ����. The
Ricci tensor is R�	 � R���	, where R���� � @����� �

	 	 	 is the Riemann tensor. The scalar curvature is given by
R � g�	R�	. Then one can write the Weyl tensor as

W�
��� � R���� � 2�
�

��K��� � g���K��
��, where the

tensor K�� �
1

n�2 �R�� �
1

2�n�1�g��R� plays a key rôle
in the classification of the Weyl anomalies, as we will see.
Square brackets denote strength-one complete antisym-
metrization. We also need to recall the definition of the
Cotton tensor: C��� � 2r��K���.

The so-called generalized connections ~CN in (4) are
obtained from Ref. [19] after setting the diffeomorphism
ghosts �� to zero. They read explicitly

 f ~CNg � f2!; dx�; ~C��; ~!�g; ~C�� � ����dx�;

~!� � !� � K��dx�; !� � @�!:

As anticipated, the generalized connections ~!� play a
crucial rôle in the classification of the Weyl anomalies.
They decompose into a ghost part !� and a ‘‘connection’’
one-form component A� � �K��dx

�. The decomposi-
tion of ~sW with respect to the ~!� degree is at the core of the
descent giving the type-A Weyl anomalies. The differential
~sW decomposes into a part noted ~s[ which lowers the ~!�
degree by one unit, a part ~s\ which does not change the ~!�

degree, and a part noted ~s] which raises the ~!� degree by
one unit.

Before displaying the action of ~sW on W , we need to
introduce some further objects: (i) the two-forms W�

� �
1
2dx

�dx�W�
���, R�� � 1

2dx
�dx�R����, and C� �

1
2dx

�dx�C���, (ii) the symbol P��
�� � ��g��g�� �


��
�� � 

�
� 
���, (iii) the generators ��

� of GL�n� trans-
formations of world indices acting on a type-�1; 1� tensor
T	� as ��

�T
	
� � 
��T

	
� � 


	
�T

�
� , and (iv) the Weyl-

covariant operator D� � r� � K����. The definition
of the generators �� is not needed here and can be found
in Ref. [19]. These generators enter the formula for the
Weyl transformation of the W tensors [19]: sWW�i

�

!���W�i
. Both the Cotton two-form C� and the general-

ized connection ~!� take their values along the generators
��, C � C���, and ~! � !���. The Weyl two-form takes
its values along the GL�n� generators: W � W�

���
�.

Finally, we denote by "�1...�n the totally antisymmetric
Levi-Civita tensor density (of weight 1).

Then the action of ~sW on W is given in Table I, follow-
ing a decomposition with respect to the ~!� degree.

TABLE I. Action of ~sW , decomposed with respect to the ~!�
degree.

~s[ ~s\ ~s]

~!� C� ~C	� ~!	 0
! 0 0 dx� ~!�

W�i
0 ~C����

�W�i
� dx�D�W�i

~!���W�i

g�	 0 ~C����
�g�	 � 2!g�	 0

~C�� 0 W�
� � ~C�� ~C�� P��

�� ~!�dx
�
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We can now state the following two theorems, the
central results reported in this Letter.

Theorem 1.—Let  �1...�2p
be the local total form

  �1...�2p
�

!
�������
�g
p "�1...�r

�1...�r�1...�2p
~!�1

. . . ~!�rdx
�1 . . .dx�r ;

p�m� r; m� n=2; 0
 r
m;

and W�� the tensor-valued two-form W�� � W�
�g��.

Then the local total forms ��n�r�r (0 
 r 
 m)

 ��n�r�r �
��1�p

2p
m!

r!p!
 �1...�2p

W�1�2 . . .W�2p�1�2p

obey the descent of equations
 

~s[��n�r�r � ~s\��n�r�1�
r�1 � 0;

~s]��n�r�r � 0; �1 
 r 
 m�

~s[��n�1�
1 � 0 � ~sW��n�0 ;

so that the following relations hold: ~sW� � 0 � ~sW	, with
� �

Pm
r�1 ��n�r�r and 	 � ��n�0 .

Theorem 2.—(A) The top form-degree component an1 of
� (cf. Theorem 1) satisfies the WZ consistency conditions
for the Weyl anomalies. The WZ conditions for an1 give rise
to a nontrivial descent, and an1 is the unique anomaly with
such a property, up to the addition of trivial terms and
anomalies satisfying a trivial descent.

(B) The anomaly 	 � ��n�0 satisfies a trivial descent and
is obtained by taking contractions of products of Weyl
tensors (m of them in dimension n � 2m). The top form-
degree component en1 of ��� 	� is proportional to the
Euler density of the manifold Mn:

 en1 �
��1�m

2m
�������
�g
p

!�R�1�1 . . .R�m�m�"�1�1...�m�m:

Proofs.—The existence part of the nontrivial descent
problem for the Weyl anomalies is given in Theorem 1
and part B of Theorem 2. It is proved by direct computa-
tion. Only part A of Theorem 2, the uniqueness part of the
problem, is not straightforward. The detailed proof will be
published elsewhere [20]. It follows lines of reasonings as
in, e.g., Refs. [17,21,22] and uses general results given in
Ref. [23]. The essential point is to determine the most
general expression at the bottom of the nontrivial descents
associated with the Weyl anomalies. (The anomalies that
satisfy the trivial descent sWan1 � 0 are the type-B Weyl
anomalies [16]; they can be classified along the lines of
Refs. [19,24]). It turns out [20] that the most general
element at the bottom of these descents is the component
of ��m�m with maximal ghost number m� 1.

We now illustrate our two theorems with the descents
corresponding to n � 2, 4, and 6. The general case can
readily be understood from these three examples.

The case n � 2 is a bit special. Although K�� is not
determined (� 0

0 ), its trace K�� �R=�2n� 2� is well

defined. Theorem 1 gives (n � 2m � 2) ��2�0 � 0 and � �

��1�1 � �!=
�������
�g
p

�"��g�� ~!�dx� � !
�������
�g
p

"��g�� ~!�dx�.
Taking the top form degree of � and recalling ~!� � !� �

A� � !� � dx�K��, we find a2
1 �

!
2

�������
�g
p

Rd2x, the
well-known result for the Weyl anomaly in two
dimensions.

Next, using Theorem 1 in the case n � 4 gives

 ��4�0 �
!
4

�������
�g
p

"�1...�4
W�1�2W�3�4 ;

��3�1 � �!
�������
�g
p

"���� ~!�dx�W��;

��2�2 � !
�������
�g
p

"�	�� ~!� ~!	dx
�dx�:

The top form-degree component of (�� 	) is e4
1:

 e4
1 �

!
4

�������
�g
p

"�����W
�� � 2A�dx���W�� � 2A�dx��;

which obviously reproduces the expression for the Euler
term of Theorem 2 because of the following identities:

 R�� � W�� � 2A��dx��; A� � �g��K��dx
�:

(5)

The descent for n � 4 thus reads

 sWe
4
1 � db

3
2 � 0; sWb

3
2 � db

2
3 � 0; sWb

2
3 � 0;

with

 b3
2 � �2!

�������
�g
p

"����!�K
�
�dx

�dx�dx�;

b2
3 � !

�������
�g
p

"�	��!�!	dx
�dx�:

Finally, in dimension 6, Theorems 1 and 2 give (a
representative of) the unique Weyl anomaly satisfying a
nontrivial descent of equations:

 e6
1 �
�!

8

�������
�g
p

"�1...�6
R�1�2 . . .R�5�6 : (6)

The elements of the corresponding descent are obtained, as
before, via the ��n�r�r ’s of Theorem 1:
 

	 � ��6�0 �
�!

8

�������
�g
p

"�1...�6
W�1�2W�3�4W�5�6 ;

��5�1 �
3!
4

�������
�g
p

"���1...�4
~!�dx

�W�1�2W�3�4 ;

��4�2 �
�3!

2

�������
�g
p

"�	���� ~!� ~!	dx�dx�W��;

��3�3 � !
�������
�g
p

"�	���� ~!� ~!	 ~!�dx�dx�dx�:

Extracting from � � ��5�1 ���4�2 ���3�3 its top form-
degree component amounts to selecting everywhere the
contribution A� of ~!� � !� �A�. As a consequence,
the top form-degree component of ��� 	� reproduces the
expression (6), making use of the identities (5). On the
other hand, extracting the different ghost-number contri-
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butions of� provides us with the elements b5
2, b4

3, and b3
4 of

the descent for e6
1:

 sWe4
1 � db

5
2 � 0; sWb5

2 � db
4
3 � 0;

sWb4
3 � db

3
4 � 0; sWb

3
4 � 0:

Without the addition of the type-B anomaly 	, the top
form-degree component a6

1 of �, taken alone, gives

 a6
1 �
�3!

8

�������
�g
p

"�1...�6
���2A�1dx�2�W�3�4W�5�6

� ��2A�1dx�2���2A�3dx�4�W�5�6

� ��2A�1dx�2���2A�3dx�4���2A�5dx�6��:

As we have shown, adding 	 � ��n�0 to an1 somehow
‘‘covariantizes’’ the latter, producing the Euler term en1 .
The Weyl anomaly an1 is reminiscent of the consistent non-
Abelian chiral anomaly. However, note that the descent for
an1 stops at form-degree n

2 > 0. Amusingly, the Euler form
en1 looks like the non-Abelian singlet anomaly. The ‘‘trace
over the internal indices’’ is taken with the Levi-Civita
density.

Conclusions.—The universal structure of the Weyl
anomalies is established in a purely algebraic manner,
independently of any regularization scheme and in arbi-
trary dimensions. In particular, we do not resort to dimen-
sional analysis. The type-A Weyl anomaly of Ref. [16]
is the counterpart of the consistent non-Abelian chiral
anomaly, in that it is the unique Weyl anomaly satisfy-
ing a nontrivial descent of equations. This proves a
long-standing conjecture originally due to Deser and
Schwimmer [16]. Since the Weyl anomalies associated
with a trivial descent can be systematically built and clas-
sified as in Refs. [19,24], our analysis completes a general,
purely algebraic classification of the Weyl anomalies in
arbitrary spacetime dimensions.
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