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Simulation and Detection of Dirac Fermions with Cold Atoms in an Optical Lattice
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We propose an experimental scheme to simulate and observe relativistic Dirac fermions with cold
atoms in a hexagonal optical lattice. By controlling the lattice anisotropy, one can realize both massive and
massless Dirac fermions and observe the phase transition between them. Through explicit calculations, we
show that both the Bragg spectroscopy and the atomic density profile in a trap can be used to demonstrate
the Dirac fermions and the associated phase transition.
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Control of ultracold atoms in an optical lattice opens up
many avenues to explore some fundamental phenomena at
the forefront of condensed-matter physics [1-5]. By de-
signing configurations of this atomic system, one can
simulate effective theories that are very different from
the microscopic atomic physics. In this Letter, we add an
unusual example to the avenues of quantum simulation by
showing that ultracold atoms in an optical lattice can be
used to investigate physics associated with relativistic
Dirac fermions. The ultracold atomic gas, as the coldest
setup in the Universe, is one of the most nonrelativistic
systems. Nevertheless, we will see that effective theories
for the quasiparticles in this system can become relativistic
under certain conditions.

We simulate Dirac fermions with single-component cold
atoms in a two-dimensional hexagonal lattice. This lattice
can be formed through interference of three laser beams, as
we show below. The physics here is closely related to the
properties of electrons in the graphene material formed
with a single layer of carbon atoms [6—12]. The graphene,
with its emergent relativistic massless quasiparticles, has
recently raised strong interest in condensed-matter physics
[6,7,9-12]. Compared with the graphene, the system with
cold atoms in an optical lattice may offer more controll-
ability. For instance, we show that one can realize both
massive and massless Dirac fermions by controlling the
anisotropy of the optical lattice. This anisotropy can be
conveniently tuned through variation of the trapping laser
intensity. Under such a tuning, one can also observe a
quantum phase transition in this system. This phase tran-
sition is not associated with any usual symmetry breaking,
but instead it is characterized by a topological change of
the Fermi surfaces [13,14]. To detect the massive and the
massless Dirac fermions and the phase transition between
them, we calculate the Bragg spectrum for this system as
well as its atomic density profile in a trap. From this
calculation, we show that the conventional atomic detec-
tion techniques based on the Bragg spectroscopy [15] or
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the density profile measurement [1,16,17] can be used to
demonstrate the Dirac fermions and the phase transition.

For cold atoms, one realizes an effectively two-
dimensional system by raising the potential barrier of the
optical lattice along the z direction to suppress the vertical
tunneling between different planes. Then, in the x-y plane,
one can form a hexagonal optical lattice with three laser
beams. For instance, as shown in Ref. [4], with three
detuned standing-wave lasers, the optical potential is given
by

V(x,y) = Z V;sin?[ky (xcosf; + ysind;) + 7/2],
=123

D

where 6, = 7/3, 0, = 27/3, 63 = 0, and k; is the optical
wave vector. If V| =V, = V3, the energy contour of the
potential V(x, y) is shown in Fig. 1(a), where its minima
(marked with the solid dots) form a standard hexagonal
lattice. It is easy to tune the potential barriers V; by
variation of the laser intensities along different directions.
With different V;, one can still get a hexagonal lattice but
with a finite anisotropy. For instance, Fig. 1(b) shows the
potential contour with V; =V, =0.91V;, where the
neighboring sites along the horizontal direction have a
larger distance and a higher barrier. As the atomic tunnel-
ing rate in an optical lattice is exponentially sensitive to the
potential barrier, this control provides an effective method
to tune the anisotropy of the atomic tunneling rate in this
lattice.

A hexagonal lattice consists of two sublattices denoted
by A and B as shown in Fig. 1(c). We consider single-
component fermionic atoms (e.g., “°K, °Li, etc.) in this
hexagonal lattice. For single-component fermions, the
atomic collisions are negligible at low temperatures. The
Hamiltonian is given by the simple form

H=~=Y"1;alb; + Hec), )
(o
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FIG. 1 (color online). The hexagonal lattices. (a),(b) The con-
tours with three potentials described in Eq. (1). The minima of
the potentials are denoted by the solid dots. All V;’ are the same
in (a), and VY = V9 = 0.91V? in (b). (c) Decomposition of the
hexagonal lattice as two triangular sublattices A and B with
anisotropic tunnelling. (d) The Brillouin zone of the hexagonal
lattice. The dispersion relations are shown in (e) for 8 =1
(gapless state) and (f) for 8 = 2.5 (gapped state).

where (i, j) represents the neighboring sites, and a; and b;
denote the fermionic mode operators for the sublattices A
and B, respectively. The tunneling rates #;;, in general,

depend on the tunneling directions in an anisotropic hex-
J

agonal lattice, and we denote them as #;, 1,, #; correspond-
ing to the three different directions [see Fig. 1(c)]. In this
work, for simplicity, we assume t; = t, =t and t; = S,
where 8 > 0 is the anisotropy parameter. In the following,
we show that, by tuning the anisotropy 3, the quasipar-
ticles in this system change their behaviors from massless
to massive Dirac fermions, with a quantum phase transition
between the two cases.

The Hamiltonian (2) can be diagonalized with a simple
extension of the method for the graphene material [12]. For
the sublattice A, the positions of the sites can be expressed
as A = mja; + mya,, where m; and m, are integers, and
the basis vectors a; = (v/3, —1)(a/2), a, = (0, a) [a =
27r/(v/3k;) is the lattice spacing]. The sites in the sublat-
tice B are generated by a shift B = A + b with three pos-
sible shift vectors b; = (1/~/3,1)(a/2), b, = (1/~/3, —1) X
(a/2), and by = (—a/+/3,0) [see Fig. 1(c)]. The first
Brillouin zone of this system also has a hexagonal
shape in the momentum space with opposite sides iden-
tified but rotated an angle of 7/6 relative to the hexa-
gon of the real-space lattice [see Fig. 1(d)]. Corresponding
to two different sites A and B in each cell in the real
hexagonal lattice, only two of the six corners in Fig. 1(d)
are inequivalent, usually denoted as K and K’. One can
choose K = (2m/a)(1/+/3,1) and K'= —K. With a
Fourier transform alT = (1/v/N)Y exp(ik - Ai)alt and
b}L = (I/W)Zk exp(ik - Bj)b;i, where N is the number
of sites of the sublattice A (or B), the Hamiltonian (2)
simplifies to H = Zk[d)(k)aibk + H.c.], where ¢p(k) =
—33_, t,exp(ik - by). The energy eigenvalues of H are
given by E, = *|¢(k)|, which has the expression

Ey = 1,2+ B2 + 2cos(kya) + 4B cos(v3k,a/2) cos(k,a/2). 3)

The energy versus the momentum from Eq. (3) is plotted
in Figs. 1(e) and 1(f) for different values of the anisotropy
B. There are two branches of curves corresponding to the
*+ signin Eq. (3). When 0 < 8 < 2, the two branches touch
each other, and around the touching points there appears a
Dirac cone structure. One has the same standard cone as
the graphene material with 8 =1 [6,7,12], and as 3 de-
viates from 1, the cones squeeze in the x or y direction, but
they still touch each other. When 8 > 2, the two branches
separate with a finite energy gap A = [¢|(8 — 2) between
them. So, across the point 8 = 2, the topology of the Fermi
surface changes, and there is a corresponding quantum
phase transition, albeit no symmetry breaks at this point.
With this phase transition, the system changes its behavior
from a semimetal to an insulator at the half filling case
(half filling means one atom per cell; note that each cell has
two sites). Around the half filling, the Fermi surface is
close to the touching points, and one can expand the
momentum Kk around one of the touching points (k?, k)
as (ky, k,) = (k) + q,, kY + g,). Up to the second order of

{
g, and g, the dispersion relation (3) becomes

Eq = i\/Az +v2g2 + v%q%, 4)

where A = 0, v, = v/3Bta/2, and v, = ta/1 — B2/4 for
0<pB<2 A=|l(B—-2), v,=1ay3B/2, and v, =
ta\/B/2 — 1 for B > 2. This simplified dispersion relation
Eq is actually a good approximation as long as q,, g, =
1/2a. We see that E, represents the standard energy-
momentum relation for the relativistic Dirac particles,
with A taking the meaning of mass and v, and v, replacing
the light velocity. The wave function for the quasiparticles
around the half filling then satisfies the Dirac equation
ihd, ¥ = HpV, where the relativistic Hamiltonian Hp is
given by

Hp = apA + v,a,p, + vya,p,, (®)]

where the @, (u =0, y) matrices satisfy the Grass-

mannian algebra a, @, + o, a, = 25##” and, for the
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2 + 1-dimensional system, they can be taken as the three
Pauli matrices o, oy, o [12].

In the above, through an analogy to the graphene phys-
ics, we have shown how to realize massive and massless
Dirac fermions with cold atoms in an anisotropic hexago-
nal lattice. A more important question for this system,
however, is how to experimentally verify the existence of
these relativistic quasiparticles and the associated quantum
phase transition. The detection method for ultracold atoms
is very different from that for condensed-matter materials,
and the widely used technique based on the transport
measurements for the latter is typically not available for
the atoms. Nevertheless, there are some specific detection
methods for the trapped atomic gas, and in the following
we show how to confirm the relativistic quasiparticles and
the phase transition with the density profile measurement
[1,16,17] and the Bragg spectroscopy [15].

The density profile of the trapped atoms can be mea-
sured through the time-of-flight imaging with the light
absorption. For free fermions, we have ballistic expansion,
and, from the final measured absorption images, one can
reconstruct the initial real-space density profile of the
trapped gas [17]. Now we show that this density profile
provides critical information for both massive and massless
Dirac fermions. For trapped fermions, the local density
approximation (LDA) is typically well satisfied, and, under
the LDA, the local chemical potential varies with the radial
coordinate by u = uy — V(r), where u is the chemical
potential at the trap center and V(r) = mw?r?/2 is the
global harmonic trapping potential [18]. So w is a mono-
tonic function of r, and the density profile n(r) is uniquely
determined by the equation of the state n(u).

For this system at temperature 7, the atomic density (the
number per unit cell) is given by

1
() = 5 / Flky, Ky, )k, (©)

where S, = 872/+/3a? is the area of the first Brillouin
zone of the honeycomb lattice, and f(k,, k,, u) =
1/{exp[(Ex — m)/T] + 1} is the Fermi distribution. At a
low temperature (T ~ 0), this density profile n(u) is shown
in Figs. 2(a) and 2(b) for the parameters with massless and
massive Dirac quasiparticles, respectively. One can clearly
see that, for the gapped phase with massive Dirac fermions,
one has a plateau at the atom density n = 1 in the density
profile. For the case with massless Dirac fermions, there is
no such plateau. So the plateau is associated with massive
quasiparticles, and its emergence with tuning of the lattice
anisotropy provides an unambiguous signal for the quan-
tum phase transition between the two cases.

To further confirm the massless Dirac fermions, one
needs to have evidence for their linear dispersion relation
with the Dirac cone structure. At T ~ 0, n(u) in Eq. (6)
simplifies to n(w) = (1/8;) quSM dk,dk,. Around the
half filling [n = 1, which corresponds to the touching point
in Fig. 1(e)], with a variation é u in the chemical potential,
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FIG. 2 (color online). The number density of atoms n per unit
cell as a function of the chemical potential u (corresponding to a
rescaled atomic density profile in a trap) for (a) 8 =1 and
(b) B =2.5. A plateau with a width 28 — 4 appears for the
latter case, which corresponds to the case when the chemical
potential sweeps inside the energy gap. (c) The derivative
dn/dp as a function of the chemical potential u for B8 = 1.
(d) An enlarged part of dn/du at the vicinity of wu = 0. The
linearity of the curve shows the linear dispersion relation for the
quasiparticles.

Sn(u) geometrically represents the cross section of the
Dirac cone, so it must be proportional to (Su)?. In
Figs. 2(c) and 2(d), we show the numerically calculated
derivative of n(w), and, indeed at the vicinity of the half
filling, we see that g—/’i is linearly proportional to du with
the explicit asymptotic expression £ = (47/ v28) |6 ul,
where we have assumed the velocity v, = v, = v. So,
experimentally, from the measured density profile n(w),
one can determine its slope. The latter quantity, with its
linear form shown in Fig. 2(d), signals the linear dispersion
relation around the Dirac cone, which confirms the mass-
less Dirac fermions.

The Bragg spectroscopy can provide an alternative and
complementary method to confirm the linear dispersion
relation for the massless Dirac fermions and the energy
gap for the massive ones. In Bragg spectroscopy [15], one
shines two laser beams on the atomic gas as shown in
Fig. 3(a). By fixing the angle between the two beams
(thus fixing the relative momentum transfer q =
k, — k,, where k; denotes the wave vector of each laser
beam), one can measure the atomic (or photonic) transition
rate by scanning the laser frequency difference w = w, —
;. From Fermi’s golden rule, this transition rate basically
measures the following dynamical structure factor [15]:

S(q, w) = Z [Kfi, | Hplix ) 8(hew — Ep, + Ex ), (7)
Kik»

where Hp = Y\ Qe'7|iy Xfx,| + He. is the light-
atom interaction Hamiltonian, and |iy ) and |fy,) denote
the initial and the final atomic states with the energies Ejy
and Eyy, and the momenta k,; and Kk, respectively. At the
half filling, the valence band [the lower half of Figs. 1(e)
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FIG. 3 (color online). Schematic of the Bragg scattering.
(a) Atoms are illuminated by two laser beams with wave vectors
k,, k, and frequencies w;, w,, respectively. (b) The dynamic
structure factors S(g, @) (not scaled) for the massless Dirac
fermions (solid line) and for the massive ones in the nonrelativ-
istic limit (dotted line). The experimentally measurable quanti-
ties w, and wr” give important parameters for the quasiparticles.

and 1(f)] is fully occupied, and the conduction band (the
upper half) is empty. In that case, the excitations are
dominantly around the touching point, and we can use
the approximate dispersion relation in Eq. (4). For the
isotropic case (8 = 1) with massless Dirac fermions, we
find that S(g, w) has the expression

(0 = w,),
(0> ,), (®)

v \Jq}

0
S(q, w) = {#_QZM
8 2

where w, = qu/h (¢ =|q|) and ¢, = hw/v. This dy-
namical structure factor is shown in Fig. 3(b). Note that,
in this case, the lower cutoff frequency w, is linearly
proportional to the momentum difference ¢, and w, van-
ishes when ¢ tends to zero. The ratio between w, and g
gives the Fermi velocity v, an important parameter as
the analogy of the light velocity for conventional relativ-
istic particles. For the anisotropic case with 8> 2, the
spectrum in Eq. (4) becomes quadratic with E = =(A +
"q%/2m, + h*q3/2m,) for small momentum transfer q,
where the effective mass m,, = h*A/v; . The dynamic
structure factor in this nonrelativistic limit becomes

0 (0 = o),
S(g, w) = gQZA (0> o), 9

where w¢” = 2A + n?q2,/4m, . Its form is shown in
Fig. 3(b). The lower cutoff frequency w¢” in this case
does not vanish as the momentum transfer goes to zero.
This distinctive difference between the dynamical structure
factors in Eqgs. (8) and (9) can be used to distinguish the
cases with massive or massless Dirac fermions. From the
variation of the cutoff frequency wy” as a function of the
momentum transfer ¢, ,, one can also experimentally fig-
ure out the important parameters such as the energy gap A
and the effective masses m, and m,,.

In summary, we have proposed an experimental scheme
to simulate and observe relativistic Dirac fermions and a

quantum phase transition with cold atoms in a (generally
anisotropic) hexagonal optical lattice. The characteristic
dispersion relations for the massless or the massive Dirac
fermions can be confirmed through either the density pro-
file measurement or the Bragg spectroscopy. The phase
transition can be identified with the appearance of a plateau
in the density profile as one tunes the lattice anisotropy.
The appearance of relativistic quasiparticles, together with
control of gauge fields for this system [19,20], opens up the
prospect to use the ultracold atoms to simulate some high
energy physics.
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