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We study the properties of general Lotka-Volterra models with competitive interactions. The intensity
of the competition depends on the position of species in an abstract niche space through an interaction
kernel. We show analytically and numerically that the properties of these models change dramatically
when the Fourier transform of this kernel is not positive definite, due to a pattern-forming instability. We
estimate properties of the species distributions, such as the steady number of species and their spacings,
for different types of interactions, including stretched exponential and constant kernels.
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It is widely believed that competition among species
greatly influences global features of ecosystems. One of
the most relevant is the fact that ecosystems can host a
limited number of species. The common explanation is the
so-called limiting similarity [1] and involves representing
species as points in an abstract niche space, whose coor-
dinates quantify the phenotypic traits of a species which
are relevant for the consumption of resources, such as the
typical size of individuals, but also preferred prey, optimal
temperature, and so on. One expects that a species experi-
ences a stronger competition with the closer species in this
space. As a consequence, a species can survive if it is able
to maintain its distance with the others above a minimum
value which depends on the competition strength. On the
contrary, a species will outcompete another when the dis-
tance between them becomes too small, due to the un-
avoidable difference in how efficiently they feed on the
resources. This is the phenomenon of competitive exclu-
sion [2], which is a basis of the concept of the ecological
niche. Thus, a stable ecosystem should be made up of a
finite number of species, approximately equidistant in a
niche space. The finiteness of the number of species has
been observed in several competition models [3] and rig-
orously demonstrated for a general class of them [4].

Deviations from the above scenario have aroused re-
newed interest when it was observed numerically [5] that
the equilibrium state of such models is not always charac-
terized by a homogeneous distribution of species in a niche
space. Instead, clumpy distributions, with clusters of many
species separated by unoccupied regions, have been ob-
served. Evidences of a similar phenomenon have been
observed also in evolutionary models [6], suggesting that
a theoretical explanation of these patterns could bring new
insights in the study of speciation mechanisms [7].

In this Letter, we study the Lotka-Volterra (LV) com-
petitive model as the prototype of competitive systems
(i.e., population models in which the growth of a species
negatively affects the growth rate of others). The statistical
properties of many-species LV models have been studied
using particular symmetries of the interaction matrix [8],
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but not much is known on the statistics of a competitive
case. In this Letter, we use the language of ecological
species competition, but the competitive LV system ap-
pears also in contexts as multimode dynamics in optical
systems [9], technology substitution [10], mode interaction
in crystallization fronts [11], or spin-wave patterns [12].
Our main result is that the macroscopic clustering of
species is related to a pattern-forming transition that sep-
arates two different regimes. The feature which is relevant
for this transition is the functional form of the competition
kernel: Patterns occur when its Fourier transform takes
negative values. A similar phenomenon is found in birth-
death particle systems with interaction at a distance, in
which individuals aggregate, forming clusters arranged in
an ordered pattern [13], with the physical space playing the
role of the niche space. We will exemplify our results with
a family of stretched exponential kernels and a long-range,
constant one.
We consider here the LV competitive model:

N
ﬁi=n,~<r—a,~2g(|xi—x1~|)nj>, i=1...,N.
=

(D

N is the number of species, and n; denotes the population
of species i. Each species is characterized by a growth rate
r and a competition parameter a; > 0 (we take into account
differences among species only in the latter parameter). A
species is also characterized by a position x; in a niche
space that we assume, for simplicity, to be the segment
[0, L] with periodic boundary conditions. Generalization to
a multidimensional niche space is straightforward, and we
expect the unrealistic boundary conditions to be irrelevant
except close to the interval end points. The competition
kernel g(x) is a non-negative and nonincreasing function.
Note that the sum in Eq. (1) contains the self-interaction
term g(0)n;.

To fully specify the dynamics, we should state how the
x; are assigned to species and eventually changed. We
consider an immigration mechanism by which new spe-
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cies, characterized by a random phenotype x € [0, L], are
introduced in the system with a rate /. This choice is
appropriate to model a situation such as an ecological
community on an island [14]. We consider extinct, and
remove from the system, species whose population goes
below a threshold n;. When 17! is very large compared to
the time scales of population dynamics, the system has
time to relax to a quasisteady state after each immigration
event. Our interest here is in the features of these states, in
which immigration plays almost no role. An efficient way
to obtain them is by integrating (by a second-order Runge-
Kutta method) Eq. (1) while introducing a new species
with population én with the proper rate. To ensure that the
reached states are stable, we ‘“switch off”’ the immigration
mechanism after some time. By a choice of the time and
the population units, we can set r = 1 and ny = 1 (thus,
the parameters a; are really a;ny/r). We take units in the
niche space so that L = 1.

In Fig. 1, we show numerical simulations of our model.
In the top row, we compare the distribution of species with
kernels g;(x) = exp(—x/R) and g,(x) = exp[—(x/R)*], R
being the typical competition range. In the exponential
case (left), species occupy the whole niche space.
Although they are not perfectly equispaced and there are
differences in the population sizes, there is a clear average
interspecies distance, which corresponds to 1/N. In the
quartic-exponential case (right), a much more regular pat-
tern emerges, with different species perfectly equidistant
(and all with the same population). Since growth limitation
is known to affect species distribution [5], we plot in the
bottom row results for kernels g,(x) + 8, and g4(x) +
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FIG. 1. Steady states of system (1), with a; = a = 0.1, ob-

tained by evolving a random configuration, initially of 200 spe-
cies, for a time ¢ = 5 X 10°. The immigration rate was initially
I = 0.004 and was switched off after half of the simulation. Top
panels: Competition kernel g;(x) = exp(—x/R) (left) and
g4(x) = exp[—(x/R)*] (right), with R =0.1. In the bottom
panels, we added a Kronecker delta §,q to the kernels above.
In the last panel, the dotted line is a steady solution of (2),
arbitrarily scaled in the vertical to fit in the same plot.

8,0, 1.€., the same kernels but with an enhanced value of the
self-competition coefficient g(0). Here the difference is
even more striking: The exponential case is similar to the
previous one, but the quartic case shows clear clusters of
species separated by empty regions. Since our model does
not include mating, the sharp distinction between self- and
interspecific competition introduced by the delta function
could be questionable. We have checked, however, that the
same clusters of species appear when the singular delta
function is replaced by continuous kernels sufficiently
peaked at the origin.

To understand the origin of the periodic patterns, we
write a continuum evolution equation for the field ¢ (x, ),
the expected density of individuals in a given point x of the
niche space as a function of time:

8,06, 1) = blx, z)(l —a [ g(lx = ¥, z)dy) +5,
2)

which is a mean field version of Eq. (1) for a; = a. In this
macroscopic description, we neglect fluctuations in the
immigration process by using a constant rate s = [0n.
The stationary homogeneous solutions of Eq. (2) are ¢¢ =
(1 = +/1+4sa)/2a), where a=aN, with N =
[ g(x)dx. Of the two solutions, only the one with the
plus sign is acceptable, since the other leads to a negative
density (this second solution corresponds to the extinct
absorbing state when s = 0). We analyze the stability of
the positive solution by considering a small harmonic
perturbation ¢ = ¢ + e exp(At + ikx). Substituting into
(2), the first order in € gives the following dispersion
relation:

3)

Ak) =1~ gboa(l n @)

N/
where g(k) = [ g(x) exp(—ikx)dx is the Fourier transform
of g(x). When A becomes positive for some values of k, the
constant solution of (2) is unstable, signaling a pattern-
forming transition [15] with the characteristic length scale
of the pattern determined by the value of k at which A(k) is
maximum. In the limit s — 0, one has ¢oa — 17, and it is
a sufficient and necessary condition for instability that the
Fourier transform of the kernel g takes negative values.

To exemplify this mechanism, we consider the family of
kernels g, (x) = exp[—(x/R)?], 0 = 0 and R being the
typical competition range. For 0 = o = 2, this family of
functions has non-negative Fourier transform [16].
Interestingly, the commonly adopted Gaussian kernel
[1,5] corresponds to the marginal case. This may imply
that some results previously obtained for this case could be
nonrobust and largely affected by the way immigration is
introduced, the presence or absence of diffusion processes
in the niche space, etc.

We quantify the pattern-forming transition in terms of
the structure function S(k) = |3 ;n; exp(ikx;)|* of the sta-
tionary distribution of species obtained from the simula-
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tions. The position and height of its maximum identify
periodic structures. In Fig. 2, we plot (left panel) the
maximum height of S as a function of the exponent o of
the kernel. The sharp increase of maxS$ for o > 2 indicates
the formation of periodic structures. This is confirmed by
the right panel plot, where we show the position k,, of the
peak of S, together with the value k; at which the linear
growth [expression (3)] has a maximum. Note that the
location of this maximum is independent of the parameters
a and s, being dependent only on the parameters in g, (x)
(R and o; the dependence on R disappears when consid-
ering k; R). The striking agreement between k,, and k; for
o > 2 confirms that the linear pattern-forming instability
of the homogeneous distribution is the mechanism respon-
sible for the periodic species arrangement observed in that
range. Except when o = 2, the value of k; R is in the range
4.0-5.0, so that the pattern periodicity would be d =
27 /k;, = aR, with a = 1.3-1.6, as observed in Fig. 1
(right panels).

Another difference between o = 2 and o > 2, visible in
Fig. 1, is the existence in the latter case of exclusion zones
around established species, in which immigrants have not
been able to settle. We can understand the presence of these
regions also from the density equation (2), for s = 0, by
noticing that its steady stable solutions ¢ (x) necessarily
have regions with ¢ (x) = 0 in the pattern-forming case.
This can be seen from the steady state condition
[dyg(lx — y))py(y) = 1/a, which is valid for all x in
which ¢y (x) # 0. If, in fact, these locations cover the
full niche space [0, 1], we can solve the steady state con-
dition by Fourier transform and find that the only solution
[for nonconstant g(x)] is the homogeneous one ¢y (x) =
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FIG. 2. Left panel: Maximum of (S(k)), the structure function
averaged over 1000 realizations of stationary distributions of
species (obtained after a time t = 10°, without immigration
during the last half of it) as a function of o, for R = 0.1, a; =
a = 0.1. Right panel: Position of the peak k,, vs o (circles),
together with the linearly fastest growing mode k; (line), from
(3). For o > 2, the difference between k,, and k; is always
smaller than the finite-size discretization of the values of k,,,. We
show configurations for o = 1.8 and o = 2.2, close to the
critical value o = 2.

(aN)~!. Since this is linearly unstable when the Fourier
transform of g(x) is not positive definite, we conclude that
steady stable solutions of (2) in the pattern-forming case
must have exclusion zones, i.e., regions of zero density.
Given the absorbing character of the ¢ = 0 state, many
steady solutions exist, differing in the amount and location
of the ¢, = 0 segments, but the most relevant are the ones
attained when s — 0. Figure 1 (bottom right) shows one
of these solutions, numerically obtained [for a kernel
g4(x) + 8(x)]. The steady solution corresponding to the
g4(x) kernel of the top right panel is zero everywhere
except at a set of periodically spaced delta functions. In
both cases, the discrete species distribution is well repre-
sented by the solutions of (2).

When g(k) remains positive, as for g,(x) with o =< 2,
A(k) remains negative, and there are no patterns nor exclu-
sion zones surviving in steady solutions of the density
equation for s — 0". Thus, the characteristic distance
between species observed in Figs. 1 and 2 should be
determined by a qualitatively different mechanism from
the case o > 2. We explore it for the exponential kernel
g1(x) = exp(—x/R), because it allows an analytical esti-
mate. Figure 3 shows the number of species at equilibrium
for a; = a and also in the heterogeneous situation in which
the a;’s are independent random variables uniformly dis-
tributed between 0.95a and 1.054, a being an average
value.

In the nonheterogeneous case, we observe that, when the
species evolve far from the extinction threshold, a new
species can always settle between two existing ones, thus
reducing their populations. This brings the n;’s closer to ny
as the number of species increases, and eventually no new
species will be admitted. Thus, for o < 2, the mechanism
fixing a maximum number of species and the characteristic
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FIG. 3. Number of species as a function of competition coef-
ficient a (left panel, R = 0.1) and the interaction distance R
(right panel, @ = 0.1). Symbols joined by dashed and solid lines
are for the cases of als heterogeneity (for which a is plotted
instead of a) and nonheterogeneity, respectively. The upper
dotted-dashed lines are from the approximation (4).
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mean distance d among them is the presence of an extinc-
tion threshold ny.

Figure 3 shows that the number of species N (in the
steady state obtained after switching off immigration)
grows linearly with 1/R and with 1/a in the case of equal
species, while heterogeneity slows down the increase with
1/R and almost stops it with 1/a. Notice that decreasing a
is the same as decreasing the threshold value n; due to our
rescaling of the equations. We can explain these depen-
dences by considering an ideal steady state made of equi-
distant species, at distance d, and having the same
population n*. The equilibrium condition for the system
of equations (1) in the exponential kernel case becomes
tanh(d/2R) = an™, which gives d = 2aRn* in the limit
(d/2R) < 1. Recalling that N = 1/d, each population n*
decreases as the number of species increases during immi-
gration. The limit, setting the steady state, will be the
situation in which n* = ny = 1, for which no new immi-
grant can be accepted. Thus, we estimate the equilibrium
number of species in this case as

N = (2aR)™". 4)

This is only a rough approximation, since species are not
equidistant nor equipopulated in the true equilibrium, but it
provides an explanation for the observed linear scaling of
N with 1/a and 1/R. Figure 3 shows that it gives an upper
estimation for the number of species in the less ordered
distributions actually found.

The case with heterogeneity of Fig. 3 shows a clearly
different mechanism: The number of species does not
change with a and, consequently, with ny. This scenario
is qualitatively similar to the pattern-forming case: There is
a distance in the niche space, not related to the threshold
value, of the order of the interaction range. Two species
cannot survive due to heterogeneity if they are closer than
this distance, independently on the mean competition
strength.

To clarify this third mechanism, we consider the role of
heterogeneity in the long-range case of a constant kernel
g(x) =1 for all x. This may be interpreted as a case in
which the kernel-decaying distance goes to infinity.
Summing all of the equations in (1), we obtain an equation
for the total population Ny, = > ;n;:

Nlot = Ntot(l - <a>Ntot)’ (5

where (@) = (3 ;a;n;)/Nyy. After a short time, the equi-
librium value N, = {(a)~! would be attained, and we can
plug this value back into Eq. (1) to obtain i; = n;(1 —
a;/{a)), valid at longer times. In the case of equal species,
one has a; =a = (a), and all possible states with
ay ;n; = 1 are allowed. In the heterogeneous case, species
having a; < (a) will grow, while the others will decrease
their population and finally go extinct. Meanwhile, it is
easy to realize that (a) will increase, sending more and

more species below the extinction threshold. The final
result, valid for any initial distribution of the a;’s if g(x) =
1, is that just one species will survive, as confirmed by
simulations (not shown).

To conclude, we studied analytically and numerically
the collective behavior of competitive Lotka-Volterra sys-
tems. Our main message is that the form of the competition
kernel changes drastically the equilibrium distribution of
species. Species clustering with periodic spacings of the
order of the interaction range can occur at one side of a
pattern-forming transition, whereas smaller spacings, de-
pending on the interaction strength a, occur at the other.
Surprisingly, the Gaussian kernel, the one usually consid-
ered in the literature, corresponds to a frontier case.
Diversity has been shown to alter qualitatively the compe-
tition outcome. Diffusion in a niche space, modeling mu-
tations [5], can be introduced and has a stabilizing effect
similar to that of the immigration rate.
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