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The state space for the N-spin mean-field (Sherrington-Kirkpatrick) spin glass—nominally an
N-cube—is embedded in a low dimensional continuous space in such a way that metastable and stable
phases can easily be discerned, a concept of nearness of configurations defined, and peaks in the Parisi
q-parameter overlap distribution identified. The dynamical and partly hierarchical interrelation of these
phases can be directly imaged.
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The mean-field (Sherrington-Kirkpatrick) spin glass [1]
continues to be an active focus of research both for its own
sake and for the light it can cast on the short-range spin
glass [2–7]. Nevertheless, problems remain. Among these
is the difficulty of visualizing its state space. One would
like to have an idea of the energy landscape, the absolute
and local minima, an image of what states are ‘‘near’’ those
minima and perhaps even get a handle on the elusive notion
of pure state in finite systems. It would be especially
convenient if phases, metastable or stable, could be iden-
tified and well localized on this landscape. A geometric
picture in which at least some of these goals can be
achieved is the object of the present article.

For systems evolving under stochastic dynamics there is
an embedding, known as the observable representation
(OR) [8,9], of the state space into continuous spaces of
various dimension. In it the features just mentioned stand
out, with phases identified as extrema of a certain convex
set and with a distance inherited from the dynamics. This
provides a direct image of the interrelationship between
phases and of the hierarchical structure of passage from
phase to phase. The notion of metastable phase—problem-
atic in infinite volume systems—is natural in this context.
Finally, there is no restriction of our method to mean field
models, the only issue being whether lattice models exhibit
structure for systems small enough for our technique to be
applied.

The OR provides an abstract definition of phase (stable
and metastable) and can be used to see the relation of
phases to the Parisi overlap parameter [10], ‘‘q.’’ In addi-
tion, the temporal flow of child phases into parents can be
displayed. In this Letter I use as the state space all 2N con-
figurations. As I will show, reduction in the state space is
possible, opening the door to extensive use of this method.

I first recall the definition of the OR. Then I offer
evidence for structure in the 12-spin system (those less
troubled by state-space size have not looked at such small
systems). Then I get to the main point, which is to show
how structure is displayed in the observable representation.
I close with a discussion of prospects.

The observable representation and associated nota-
tion.—States are x, y, z 2 X, with X a finite set. The

system moves in discrete time according to an (assumed)
irreducible stochastic matrix R: Rxy � Pr�z�t� 1� �
xjz�t� � y�. For a spin glass, R satisfies detailed balance
(although Refs. [8,11] are more general). The eigenvalues
of R are therefore real and can be written 1 � �0 > j�1j �
j�2j . . . � 0. �0 is associated with the stationary distribu-
tion: Rp0 � p0; the eigenvalue relation for the associated
left eigenvector, A0�x� � 1, expresses conservation of
probability. Left eigenvectors are designated Ak (same k
as in f�kg) and right eigenvectors pk. They satisfy
hAkjpji � �kj and are normalized by maxxjAk�x�j � 1.

The m-dimensional observable representation is the set
(an embedding of X in Rm)

 A m � fA 2 Rm j A � �A1�x�; . . . ; Am�x��; x 2 Xg: (1)

To visualize, write the first m left eigenvectors as row
vectors, one atop the other. The points of Am are then
the columns:

 

A�x1� A�x2� A�x3� . . .
# # #

A1 ! A1�x1� A1�x2� A1�x3� . . .
A2 ! A2�x1� A2�x2� A2�x3� . . .

..

. ..
. ..

. ..
.

Am ! Am�x1� Am�x2� Am�x3� . . .

: (2)

In [8] we established the properties of Am when there is a
phase transition, which corresponds [11] to eigenvalue near
degeneracy for the largest eigenvalues. If �m is close to 1,
while �m�1 is not, Am is a simplex with points belonging
to the phases located at the vertices. Interior points are not
in phases, but their barycentric coordinates with respect to
the extrema are the probabilities that these points evolve
towards the corresponding phase.

In [8] we distinguished which assertions remain true if
�m�1 is not small. The convex hull of Am need not be a
simplex, but there still are extrema, and points dynamically
close and in a phase cluster about the extrema. The relation
between dynamical proximity and closeness in A also
holds for nonextrema [9]. Let D�x; y; t� �

P
uj�R

t�ux 	

�Rt�uyj=
������������
p0�u�

p
. �Rt�ux is the probability that starting at x
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one arrives at u in t time steps. Then D�x; y; t�=j�mj
t �

�
Pm
��1 jA��x� 	 A��y�j

2�1=2. Points whose distributions
merge are spatially close in A.

Small mean-field models.—For N as small as 12 there
are structures associated with slow relaxation to more
stable phases. The energy is E � 	

P
Jjk�j�k=2

����
N
p

,
with Jjk � 
1 the quenched bonds and�j � 
1 the spins.
The temperature-T, transition probability from x �
��1; �2; . . . ; �N� to x0 � x is R�x0; x� � expf	�E�x0� 	
E�x��=Tg=N, when E�x0�>E�x�; otherwise it is 1=N. I
permit only single spin flips.

Structure was observed in the time-dependent distribu-
tion of the Parisi overlap parameter, ‘‘q’’ [4,5,10]: For fixed
J, two random initial conditions (x�‘�) are taken. They
evolve separately under the stochastic dynamics and the
overlap q � x�1�x�2�=N � �1=N�

PN
k�1 �

�1�
k �

�2�
k is calcu-

lated. Values of q are collected for many times and many
initial conditions. In the distribution function for q, peaks
represent persistence in pairs of metastable phases, and the
time dependence of the distribution reflects relaxation.

For N � 12 there is structure. Figure 1 shows histo-
grams for a specific quench, Jij (to be called Ĵ), for three
run times. For a few hundred time steps the system gets

caught in metastable phases whose importance gradually
lessens (space limitations preclude more figures) until
about time 3000. This time scale is confirmed by f�kg.
Note that the central peak does not indicate an absence
of structure (see the caption).

Visualizing structure in the OR.—Fig. 2 shows A2 and
A3 for the R associated with Ĵ. The first few eigenvalues
of 1	 R are: 0, �2:1; 7:1; 8:3� � 10	6, �5:58; 5:62; 11:19;
11:20� � 10	4, �7:92; 7:93; 10:84; 10:86� � 10	3. By the
criteria of [8], there are many phases.

The following features can be identified. The four ‘‘cor-
ner’’ states in A2 are absolute minima. The clusters of
nearby points constitute the ground states, and as in [8]
(Fig. 3), contain more points than is evident to the eye. The
prominent points near A1 � 0 (at large jA2j) support meta-
stable phases (they are extrema in higher dimension), but
do not evolve to unique target phases. A state at one of
these positions will ultimately find itself with near 50–50
probability on one side or the other. This statement is not
based on simulation (although it can be so verified), but
rather on the ‘‘barycentric’’ theorem quoted earlier. The
prominent points near A2 � 0 (with large jA1j) have simi-
lar properties and asymptotics.
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FIG. 1 (color online). Histogram of the distribution function for ‘‘q,’’ for the same quench, for a succession of times. T � 0:2Tc and
t � 100, 200, and 3000. The central peak does not correspond to an absence of ordering. Rather the phases break into pairs, with half
the pairwise products, x�j�x�k�, being zero. Fig. 1c is close to the infinite-time distribution,

P
x;yp0�x�p0�y���q	 qxy�.

 

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

A
1
 →

A
2 →

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

1

A
1

A
2

A
3

FIG. 2 (color online). A2 and A3 for Ĵ. Symbol size increases with equilibrium weight (hence lower energy). Circles indicate local
minima in energy. For A3 the convex hull (a tetrahedron) has been outlined. The vertical lines of large-weight points on the left and
right sides of A2 are at approximately right angles to one another in R3.
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To study the hierarchy of temporal evolution I use the
extrema of A to identify phases. For Ĵ there are 32 local
minima and by A7 they are all extrema. I use them as the
nuclei of the phases. Among J’s this is a relatively large
number, but our results are unchanged when non-local-
minimum extrema are used as nuclei. A significant aspect
of phase identification is the positing of a distance on X.
We have previously discussed several metrics [12,13] and I
here use d2

t �x; y� �
P
k�1jAk�x� 	 Ak�y�j

2j�kjt. t is an ad-
justable time scale. The results are not sensitive to this
choice, nor to t.

Phases can now be defined: For a phase nucleus, x (an
extremum in Am for appropriate m), the distance to the
nearest other nucleus was found. All points within half that
distance were associated with x and called its phase. This
left points in ‘‘no man’s land’’, which was formally treated
as another phase. For Ĵ they were about 40% of the points.
Nevertheless, their total p0 measure was only �2� 10	5.

The next step was to study the induced dynamics among
the phases. An ensemble of points was started within each
phase with the probability of being in a given state (within
that phase) proportional to its p0 measure [14]. I then
checked the likelihood that on exiting this phase it went
to a particular other phase. This coarse-grained matrix of
transition probabilities is designated ~R.

It is in a diagrammatic representation of the flows in ~R
that one can hope to see the hierarchical structure associ-
ated with relaxation through a succession of metastable
phases. Figure 3 shows two such representations. In the
first, the phases are sorted into 3 categories, long-,
medium-, and short-lived. On the lowest level are the
longest-lived, etc. The symbol and color correspond to
the amount of inflow. A phase’s left-right position follows
the A1 values of that phase’s nucleus among phases at the
same lifetime level. Lines indicate transition probabilities,
with line width a monotonic function of transition proba-
bility. Blue lines are flow from higher (shorter lifetime)
levels to lower, red go oppositely, and green are lateral
transitions. A perfect hierarchical structure would be al-

most all blue and each node would flow to only one other
node. This is clearly not the case, with the principal devia-
tions related to the col-like metastable phases.

A second display is to superimpose the flows of ~R on the
OR for R (putting a phase at the location of its nucleus).
This is Fig. 3(b). Now the symbol reflects the energy of the
nucleus of the phase, and its size the lifetime. Again the
breakdown in tree structure arises principally from the
quasicols. The stable phases are in the corners, and meta-
stable phases with flows to more than one side of the
diagram have intermediate lifetime and A1  0.

If one were to watch the time evolution of the system on
this embedding, it would have the appearance of a random
walk on a landscape of hills and valleys, as envisioned, for
example, in Kobe and Krawczyk [15], who present images
resembling ours. The advantage of using the OR is that I do
not need to resort to hamming distance (which, can be a
poor measure of dynamical proximity), but have a metric
that is automatic and has physical significance.

The variation of these figures with quench can be seen in
Fig. 4, illustrating ~R for a 13-spin system. There are no
isolated local minima (there are equal energy pairs differ-
ing by a spin flip), nor do the local-minima exhaust the
extrema used. Here a more treelike structure occurs. The
cols (the most important being the base-down triangles at
A1  
0:45) are both of lesser weight and have larger jA1j
values. This also is evident in Fig. 4(a), since the principal
phases that feed both sides have relatively short lifetimes.

Returning to Ĵ, I interpret the transients in Fig. 1. I have
already noted that the central peak persists for long times
because the product of points in the stable phases is zero
for several combinations. In the time-200 histogram the
largest peaks away from 0 or 
1 are at q � 
1=3. Aside
from combinations of low probability these involve exclu-
sively the two phases at �A1; A2�  
�0:12; 0:72�, which
are the stars in Fig. 3(b) (and are extrema of A6). Indeed,
going to our lifetime data, there are only 4 phases with
lifetimes on the order of hundreds. The others are at
�A1; A2�  
�0:87; 0:18� (referred to earlier as metastable
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FIG. 3 (color online). Representations of the matrix ~R, as explained in the text. The quench is Ĵ. The sequence of symbols (in order
of declining amount) is circle, star, base-up triangle, base-down triangle. The sequence of colors is black, red, blue, green, cyan.

PRL 98, 257202 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
22 JUNE 2007

257202-3



phases). Their inner product with the stable states however
is either 0 or 
1. I have thus identified the phases giving
rise to a specific peak in the Parisi q distribution.

Summary and prospects.—The observable representa-
tion for the mean-field spin glass (and for other systems
as well) provides a continuous embedding of a discrete
state space. In the OR, the distance between points reflects
dynamical proximity and the extrema of the convex hull
correspond to phases, stable and metastable. Moreover, the
barycentric coordinates of a point in the interior of the
convex hull provide probabilities for the arrival of this
point in one or another of the phases.

An obstacle to the implementation of this representation
is the growth of the state space withN, the number of spins.
There are two reasons, however, that it should prove pos-
sible to go well beyond the N’s used in this article. First,
my own resources, both with respect to programming and
hardware are modest. But more important is the possibility
of focusing on the significant states. This is done, for
example, in Ref. [15], where for the 4� 4� 4 lattice
spin glass (264 spin states) they restrict themselves to the
first 3 levels, comprising 1 635 796  220:6 states, a reduc-
tion of more than 40 powers of 2. To test whether such a
reduction would affect the OR, I restricted the matrix R

associated with Ĵ to the first 4 energy levels. This gave 162
states in place of 4096. The associated OR is shown in
Fig. 5. Comparison with Fig. 2 shows that the restriction
has left the important information intact. This justifies
optimism that the 3� 3� 3 cube should yield to this
analysis, and perhaps larger systems as well.
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FIG. 5. Observable representation for the same quench (and
the same temperature) as the left image of Fig. 2.
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FIG. 4 (color online). Representations
of the matrix ~R for a 13 spin system, as
explained in the text. The same symbols,
etc., are used as in the previous figure.
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