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We show that the spatial dimensionality of the quantum critical point associated with Bose-Einstein
condensation at T � 0 is reduced when the underlying lattice comprises layers coupled by a frustrating
interaction. Our theoretical predictions for the critical behavior correspond very well with recent
measurements in BaCuSi2O6 [ S. E. Sebastian et al., Nature (London) 441, 617 (2006)].
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The universality class of a critical point (CP) depends on
a few properties such as the symmetry of the underlying
model, range of the interactions, number of components of
the order parameter (OP), and the space dimensionality d
[1]. For highly anisotropic systems such as weakly coupled
layers, the universality class changes when the system
approaches the CP. A dimensional crossover takes place:
the effective dimensionality is reduced beyond a certain
distance from the CP, determined by the weak interlayer
interaction. Sufficiently close to the CP the transition is,
however, three dimensional. In contrast, the dimensional
reduction (DR) discussed here occurs when the system
approaches a Gaussian quantum critical point (QCP).
This qualitative difference results from the nature of the
interlayer coupling that vanishes right at the QCP for a
chemical potential tuned Bose-Einstein condensation
(BEC). We argue this effect is relevant for the field tuned
QCP of a geometrically frustrated quantum magnet.

Although geometric frustration has previously been in-
voked [2] as a mechanism for DR, zero-point fluctuations
are expected to restore the interlayer coupling [3], as
shown by Maltseva and Coleman [4]. We show, however,
that this coupling is suppressed near the BEC-QCP, rele-
vant to spin dimer systems in a magnetic field. In this case,
the spatial dimensionality of the Gaussian QCP is d � 2.
Interactions between either thermally excited or quantum
condensed bosons induce a crossover to d � 3 away from
the QCP. Key to this result is the supression of zero-point
phase fluctuations of the OP near a chemical potential
tuned BEC. First experimental evidence of this phenome-
non was found recently by critical exponents measure-
ments of a field induced QCP in BaCuSi2O6 [5].

We first present rigorous results for a chemical potential
tuned BEC of interacting bosons on a body-centered te-
tragonal (bct) lattice. Later we apply these results to S � 1

2
spins forming dimers on a bct lattice, thereby offering a
quantitative explanation for the observation of DR [5] in
the similar BaCuSi2O6 system [6,7].

We start from the Hamiltonian of interacting bosons

 HB �
X
k

�"k ���a
y
kak � u

X
i

nini; (1)

where ni � ayi ai is the local number operator of the bosons
and ayk �

P
ia
y
i e

ik�Ri=
����
N
p

. The tight binding dispersion for
nearest-neighbor boson hopping on the bcc lattice is

 "k � "k�kk� � 2t?��kk� coskz; (2)

where kk � �kx; ky� refers to the in-plane momentum.
"k�kk� � tk�2� coskx � cosky� is the in-plane dispersion,

while ��kk� � coskx2 cos
ky
2 . For tk, t? > 0, and tk > t?=2,

a BEC takes place at Kk � ��;��. Since ��Kk� � 0, the
dispersion "k at the condensation momentum is indepen-
dent of kz. For an ideal Bose gas (u � 0) this implies
complete layer decoupling at T � 0. Only excitations at
finite T with in-plane momentum away from the conden-
sation point can propagate in the z direction. This behavior
changes for finite interactions (u > 0). States in the Bose
condensate scatter and create virtual excitations above the
condensate that can propagate in the z direction and couple
to condensate states in other layers [4]. The condensed
state of interacting bosons is then truly 3D, even at T � 0.

The above argument for ‘‘dimensional restoration’’ due
to interactions does not apply in case of chemical potential
tuned BEC. In this case, the number of bosons at T � 0 is
zero before the BEC sets in (�< 0). The absence of
particles makes their interaction mute and this situation
persists arbitrarily close to the QCP. While the Bose con-
densed state for �> 0 and the entire regime for T > 0 is
3D, the decoupling for (�< 0, T � 0) has dramatic con-
sequences. We show that the BEC-transition temperature
varies as

 Tc / � ln
�
tk
�

��
lnln

tk
�
; (3)

whereas Tc / �2=d holds instead for an isotropic Bose
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system in d > 2. Despite the fact that different layers are
coupled at finite T the BEC-transition temperature, Eq. (3),
depends on � just like the Berezinskii-Kosterlitz-Thouless
(BKT) transition temperature of a 2D system [8].

The one-loop renormalization group (RG) calculation
used to obtain this result (analogous to Ref. [8]) shows a
classical thermodynamic 3D XY transition, instead of a
BKT transition. We conclude, therefore, that the T � 0
QCP of chemical potential tuned BEC with 3D dispersion,
Eq. (2), is strictly 2D. The system then crosses over to be
3D for �> 0 or T > 0, where the density of bosons
becomes finite and boson-boson interactions drive the
crossover to d � 3. The transition temperature of this
3D BEC is given by the 2D result, Eq. (3). It is important
to stress that the vanishing density for (�< 0, T � 0)
implies that these results are not limited to weakly inter-
acting bosons [9].

The detailed derivation of Eq. (3) using the RG approach
will be presented in [10]. Here we present a heuristic
derivation of the same result based on an approach intro-
duced by Popov [8,11]: infrared divergencies are cutoff for

momenta k < k0 ’
�����������
�=tk

q
. We analyze the interacting

Bose system in the disordered phase and perform an ex-
pansion in the interlayer hopping amplitude t?=tk.
Dominant interactions at low density are given by ladder
diagrams [see Fig. 1(a)], yielding a renormalized boson
interaction [12]:

 v�1
0 �

1

4

Z
k0

d2kk
4�2"k�kk�

/
lnk�1

0

tk
; (4)

for u! 1 (hard-core bosons). The bare interlayer cou-
pling leads to scattering of bosons between different layers.
The corresponding scattering matrices between neighbor-
ing layers, v1 [see Fig. 1(b)], and second neighbor layers,
v2 [see Fig. 1(c)] are then given as (l � 1, 2)

 vl ’ �
�
t?
tk

�
2l tk

lnk�1
0

; (5)

where the overall negative sign results from the fact that
the lowest order contribution to v1;2 are of order v2

0.

These interlayer coupling lead to new nonlocal interaction
terms vlnini�lez in the low energy theory, and result from
T � 0 quantum fluctuations of the interacting Bose sys-
tem. Pairs of boson propagate as virtual excitations be-
tween layers and mediate the nonlocal boson-boson
coupling [4]. It is crucial to observe that no coherent boson
hopping t�?;la

y
kk;n

akk;n�l between layers emerges for T�0.
HB is invariant with respect to the discrete Z2 symmetry:

kx ! �kx � 2� and kz ! kz � �. As long as this symme-
try is intact, no term t�?;1 cos�kz� in the dispersion is al-
lowed, while coherent hopping between second neighbor
layers with t�?;2 cos�2kz� does not break the Z2 symmetry.
To determine these coherent interlayer hoppings t�?;l we
perform a mean field (MF) theory of the low energy prob-
lem with interlayer interactions vl. We approximate
vlnini�lez ! vlha

y
i ai�lezia

y
i ai�lez and obtain

 t�?;l � vl
Z d2kk

4�2 ha
y
kk;n

akk;n�li: (6)

The expectation values of haykk;nakk;n�li are determined
self-consistently. As expected, we find t�?;2�T � 0� � 0

and t�?;1�T� � 0. The former result reflects that coherent
motion is forbidden at T � 0, while the latter is caused by
the Z2 symmetry, forcing the hopping between nearest
neighbor layers to vanish at all T. The solution of Eq. (6)
for the coherent second neighbor hopping is

 t�?;2 ’ v2

�
t?
tk

�
2 T
tk

ln
T

tkk
2
0

: (7)

Using the above result for v2 it then follows t�?;2 ’ �
t?
tk
�6�

T lnT=�
lntk=�

. Since the density of bosons is � ’ T ln�T=��=tk,

thermally excited bosons induce a coherent hopping be-
tween second neighbor layers t�?;2 / �= ln�tk=��. While
this hopping is small, the finite T transition will be 3D XY
with Tc given by the MF condition:

 �c � v0�; (8)

and as usual for strongly anisotropic systems, its value is
given by the characteristic temperature scale of the in-
plane ordering. Since t�?;2 	 �k�k0�, the d � 2 fluctuations
dominate the value of Tc at very low densities resulting in
Eq. (3). Similarly, we obtain d � 2 expressions for

 ��T� 0;�� /� ln
�
tk
; ��T;�� 0� /

T
tk

ln
�
ln
tk
T

�
: (9)

Based on these results we next address the origin of DR
in the frustrated magnet BaCuSi2O6 [5]. We start from a
Heisenberg Hamiltonian of S � 1

2 spin dimers on a bct
lattice, closely approximating BaCuSi2O6 [6,7]. The domi-
nant Heisenberg interaction, J

P
iSi1 � Si2, is between spins

on the same dimer i. Since there are two low energy states
in an applied magnetic field, the singlet and the Szi1 �
Szi2 � 1 triplet, we can describe the low energy sector

(a)

n,k1 n,k2

n+1,k1-k3n+1,k1+k3
(b) n+2,k1-k3n+2,k1+k3

n,k1 n,k2

(c)

n,k1

n,k2 n,k2-k3

n,k1+k3

FIG. 1 (color online). (a) Ladder diagrams that provide the
dominant contribution to the intralayer scattering in the low
density regime [12]. (b) and (c) leading order diagrams that
contribute to the coherent interlayer hoppings t�?;1 and t�?;2.
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with hard-core bosons. The triplet state corresponds to an
effective site i occupied by a boson while the singlet state is
mapped into the empty site [13,14]. The resulting low
energy effective Hamiltonian corresponds to a gas of in-
teracting (infinite u) canonical bosons, as in Eq. (1). The
number of bosons (triplets) equals the magnetization along
the z axis. The chemical potential � � g�B�H �Hc� is
determined by the applied magnetic fieldH and the critical
field g�BHc � J� 2J0. The hoppings tk � J0 and t? �
J? are determined by the interdimer exchange interactions
between spins on the same bilayer, J0 ’ 6 K [14–16] and
on adjacent bilayers, J? < J0. The modulation of the
BaCuSi2O6 lattice structure along the c axis leads to an
alternation of two nonequivalent bilayers A and B, with
intradimer interactions JA � 49:5�1� K and JB �
54:8�1� K [7,16]. This alternation reduces the magnitude
of the residual nonfrustrating interlayer couplings charac-
teristic to all real systems [17], while the principal treat-
ment of BaCuSi2O6 presented here remains unaffected.

The correspondence between the quantum spin model
for BaCuSi2O6 with the boson model of Eq. (1) allows us
to interpret Tc of Eq. (3) as the phase boundary as a
function of � � g�B�H �Hc�. At this phase transition,
we also expect that the Z2 symmetry will be broken as well.
It is interesting to analyze the dimensional crossover and
the coupling between second neighbor layers directly in
the spin language. For classical spins Si at T � 0, the
frustrated nature of J? produces a perfect decoupling of
the OP’s (XY staggered magnetization) on different layers.
However, this decoupling is unstable to quantum or ther-
mal fluctuations [4]. Either of these fluctuations induces an
effective interlayer coupling via an order from disorder
mechanism as illustrated in Fig. 2. When the sum of the
four spins on a given plaquette, SP, is exactly equal to zero,
the coupling between that plaquette and the spins which are
above (ST) and below (SB) cancels out. However, phase
fluctuations can produce a net total spin on the plaquette,
SP � 0. Since SP is antiferromagnetically coupled with ST
and SB [see Fig. 2(b)], an effective ferromagnetic (FM)
interaction results between ST and SB, i.e., between second
neighbor layers.

The defining characteristic of the BEC quantum phase
transition is that amplitude fluctuations of the OP drive it,
in contrast to the XY transition driven by phase fluctua-
tions. This difference is vital to the effective coupling at the
QCP: it vanishes due to its quadratic dependence on the
amplitude of the OP. The remarkable consequence is a DR
of the Gaussian QCP from d � 3 to d � 2.

Our previous analysis shows that the nonuniversal pre-
factors of Eqs. (3) and (10) can be accurately determined
using a strictly d � 2 theory. The RG and MF approaches
used to describe the quasicondensate phase of a weakly
interacting 2D Bose gas [11] give the right universality
class and generic T vs� dependence, yet are quantitatively
inadequate for realistic densities. The limitation of these
treatments arises from the insensitivity of the size of the

critical region �T (where fluctuation corrections of the
BKT transition are important) to the smallness of the
interaction: �T=Tc 
 1= lntk=v0. This limitation is, how-
ever, overcome by our use of Monte Carlo (MC) simula-
tions to obtain the nonuniversal constants in Eq. (3), and
the results of Prokof’ev and Svistunov [18] who computed
these constants for realistic low densities and weak inter-
actions, obtaining the following expression for the phase
boundary of the quasicondensate [18]:

 �c �
v0T
�J0

ln
J0��
v0

; (10)

where �� � 13:2� 0:4. In Fig. 3(a), we compare the
experimental data for BaCuSi2O6 [5] with the result of
Eq. (10) and Monte Carlo (MC) simulations of hard-core
bosons on a square lattice (L� L with L � 32) with hop-
ping tk � J0 � 6 K [15,16]. Similar MC results were re-
ported previously in Ref. [19]. The agreement is good for
T & 200 mK (� & 0:02) but, as expected, there is a sig-
nificant deviation at higher temperatures (densities). The
significant underestimation of Tc by the MC result at
higher temperatures indicates that neglecting the effective
interlayer tunneling is no longer valid in BaCuSi2O6 for
� * 0:02. Figure 3(b) shows a similar comparison for
���; T ’ 0� and ��� � 0; T� [see Eqs. (10)]. Again, we
compare the experimental data against the MC simulation
because the MF approximation that leads to Eqs. (10) is
adequate to determine the generic� and T dependence, but
cannot reproduce the nonuniversal constants. Our theory
also predicts a linear dependence of the specific heat
C�T;Hc� and the nuclear relaxation time 1=T1�T;Hc� as
a function of T at the QCP of BaCuSi2O6.

To compute the exponent of the next-order correction to
Eq. (3) we note that the effective boson-boson interaction
v0��� is obtained as an expansion in the small parameter
�1=2 [12]: ~v0��� � v0�1� ��

1=2 � :::�. While the first
term in this expansion is determined by the ladder dia-
grams of Fig. 1(a), higher-order diagrams contribute to the
second term. The MF relation (8) implies that the next
order correction to Eq. (10) is proportional to T3=2. The
value of u1 determines the crossover between the linear

(a) (b)sT

sB

sT

sB

FIG. 2 (color online). (a) The perfect antiferromagnetic (AF)
order of the four spins in the square plaquette precludes an
effective coupling between SB and ST . (b) A phase fluctuation
of the AF OP induces an effective ferromagnetic coupling
between SB and ST . For BaCuSi2O6, each site represents a dimer.
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regime consistent with a d � 2-QCP and the T3=2 regime
characteristic of a d � 3 BEC. Such a crossover was
reported in BaCuSi2O6 [5]. We can demonstrate in gen-
eral that the phase boundary equation of a d-dimensional
bosonic system comprising d� 1-dimensional regions
coupled via a frustrated interaction is �c ’ AT

�d�1�=2 �

BTd=2 for low enough �.
Our mapping of the spin problem to the boson modelHB

is based on the assumption that only the lowest triplet and
the singlet modes are important at low energies. The low
density expansion for the boson problem is then well
justified, as the XY symmetry of the original spins Si is
directly responsible for the charge conservation of HB.
Recently, it was shown by Rösch and Vojta [20] that the
inclusion of the two higher triplet modes generates a small
coherent second-neighbor hopping of low energy triplets
between layers t�?;2 ’ J

6
?=J

5. This interesting effect re-
stores the d � 3 character of the spin problem. For realistic
values of J � 49:5�1� K and J? < J0, J6

?=J
5 < 0:1 mK in

BaCuSi2O6. This implies that the mechanism discussed in
our Letter is still dominant for all experimentally acces-
sible temperatures T * 30 mK. Moreover, the U(1)-
symmetry breaking terms induced by dipolar interactions
will produce a crossover to a QCP with discrete symmetry
at T 
 10 mK [21], i.e., before the mechanism of Ref. [20]
sets in. Finally, the inevitable presence of finite nonfrus-
trated couplings in real systems will eventually restore the
3D behavior below some characteristic temperature T0 (for
BaCuSi2O6 we estimate T0 < 30 mK [17]). We stress that
these considerations do not effect our theoretical results for

HB [Eq. (1)], which establish the existence of a nontrivial
3D interacting many body system with a strictly d � 2
QCP.

In summary, we demonstrate that the dimensionality of
the BEC-QCP is d � 2 when the interlayer coupling is
frustrated. However, this coupling is relevant for changing
the thermodynamic phase transition from BKT to the
3D-XY universality class. These results explain quantita-
tively, and without free parameters, the DR manifested in
the measured quantum critical exponents of BaCuSi2O6
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FIG. 3 (color online). (a) Phase boundary near the QCP mea-
sured in BaCuSi2O6 [5] compared to the curves obtained from a
MC simulation and Eq. (10) for a d � 2 gas of hard-core bosons
on a square lattice with tk � J0 � 6 K. (b) Similar comparison
for ��T � 30 mK; � � H �Hc� and ��T � 30 mK; H � Hc�.
We have neglected the density of bosons on the B bilayers
because J2 � g�BH� jt

�
?;lj as long as H is not close to

J2=g�B ’ Hc � 3:4 T.
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