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We formulate the problem of electron transport through a single-molecule magnet (SMM) in the
Coulomb blockade regime taking into account topological interference effects for the tunneling of the
large spin of a SMM. The interference originates from spin Berry phases associated with different
tunneling paths. We show that, in the case of incoherent spin states, it is essential to place the SMM
between oppositely spin-polarized source and drain leads in order to detect the spin tunneling in the
stationary current, which exhibits topological zeros as a function of the transverse magnetic field.
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Single-molecule magnets (SMMs), such as Mn12 [1,2]
and Fe8 [3,4], have become the focus of intense research
since experiments on bulk samples demonstrated the quan-
tum tunneling of a single magnetic moment on a macro-
scopic scale. These molecules are characterized by a large
total spin, a large magnetic anisotropy barrier, and anisot-
ropy terms which allow the spin to tunnel through the
barrier. Transport through SMMs offers several unique
features with a potentially large impact in applications
for magnetic devices based on the SMM, such as high-
density magnetic storage as well as quantum computing
applications [5]. Recently, experiments have pointed out
the importance of the interference between spin tunneling
paths in molecules and its effects on electron transport
scenarios involving SMMs. For instance, measurements
of the magnetization in bulk Fe8 have observed oscillations
in the tunnel splitting �Es;�s between states Sz � s and�s
as a function of a transverse magnetic field at temperatures
between 0.05 and 0.7 K [6]. This effect of macroscopic
quantum tunneling (MQT) [7], where the initial and final
spin states do not retain their coherence, can be explained
by the interference between Berry phases acquired by spin
tunneling paths of opposite windings using a coherent spin-
state path integral approach [8,9], which accounts for the
coherence of the virtual states over which the spin tunnels.
To date, several experiments have shown the possibility to
work with an individual SMM preserving the magnetic
properties [10], thereby demonstrating the Coulomb block-
ade (CB) effect at a low temperature in a single SMM
transistor geometry [10]. The theoretically predicted
Kondo effect in SMMs [11,12] has not been observed
yet. A theoretical description of the observed CB effect
has recently been given by means of coherent initial and
final spin states in Ref. [13], where macroscopic quantum
coherence (MQC) [7] is assumed. In this Letter, we pro-
pose the Berry-phase blockade effect by coupling an indi-
vidual SMM to spin-polarized leads. We analyze the
transport properties of the system in the CB regime for
the ground state of a SMM in the presence of a longitudinal
and transverse magnetic field. Since the decoherence time
between degenerate spin states can be as small as T2 �

10�9 s [14,15], we work with incoherent initial and final
spin states in the MQT regime. We show that, in the case of
incoherent spin tunneling, it is essential to use oppositely
spin-polarized source and drain leads in order to be able to
observe variations of the stationary current as a function of
longitudinal or transverse magnetic field. In particular, the
current can be suppressed due to the Berry-phase interfer-
ence of the spin tunneling paths [16]. In the case of fully
polarized leads, complete current suppression coincides
precisely with the topological zeros of the spin tunneling.
In the case of partially polarized leads, a partial Berry-
phase blockade is visible. In the following, we present our
calculations. We derive the (generalized) master equation
for the low energy states at a temperature of 0.01 K and
calculate the stationary current through the SMM for the
cases of unpolarized, fully, and partially polarized leads.
We apply our results to the newly synthesized SMM Ni4,
which has a spin of s � 4 and a ground state tunnel
splitting of �Es;�s � 0:01 K at zero magnetic field [17].
Consider a SMM in the CB regime which is tunnel-coupled
to two polarized leads at the chemical potentials �l, where
l � L;R denote the left and the right lead, respectively.
The total Hamiltonian is given by

 H � Hl �H s �Hm �H gate; (1)

where Hl �
P
lk��lkc

y
lk�clk� represents the energy of the

leads. cylk� creates an electron in lead l with orbital state k,
spin �, and energy �lk. The coupling of the leads to the
molecule is described by Hm �

P
lpk�t

�
lpc
y
lk�dp� � H:c:,

where t�lp denotes the tunneling amplitude and dyp� creates
an electron on the molecule in orbital state p. The term H s
is the spin Hamiltonian of a SMM in an external transverse
magnetic field H? � Hx � iHy � jH?je

i’ and a longitu-
dinal magnetic field Hz, i.e.,
 

H s��ANS2
N;z�

BN
2
�S2
N;��S

2
N;���

B4;N

3
�S4
N;��S

4
N;��

�g�BHzSN;z�
1

2
�h�?SN;��h?SN;��; (2)

where the easy axis is taken along z, SN;� � SN;x � iSN;y,
and the integer index N denotes the charging state of the
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SMM; e.g., N � 0 when the SMM is neutral and N � 1
adds one electron to the SMM. We define h? � g�BH?.
The total electrostatic energy is taken into account by
H gate � �Ne�Qgate�

2=2Cleads � Ec�N �Qgate=e�2,
where Ec � e2=2Cleads is the charging energy [18],Qgate �

CSMMVgate is the charge induced by the gate voltage Vgate,
CSMM is the capacitance between the SMM and gate lead,
and Cleads is the total capacitance between the SMM and all
leads. We chose Qgate � e=2 for our calculations since
tunneling becomes favorable for this gate charge value.
The gate voltage will allow us to be in or out of resonance
with the SMM energy levels, and, as a result, the leading
contribution to the current is due to sequential or cotunnel-
ing processes, respectively. In Eq. (2), the dominant longi-
tudinal anisotropy term creates a ladder structure in the
molecule spectrum where the eigenstates j �mNi of Sz are
degenerate. The weaker transverse anisotropy terms couple
these states. The coupling parameters depend on the charg-
ing state of the molecule. For example, it is known that
Mn12 changes its easy-axis anisotropy constant (and its
total spin) from AN�0 � 56 �eV (SN�0 � 10) to AN�1 �
43 �eV (SN�1 � 19=2) and AN�2 � 32 �eV (SN�2 �
10) when singly and doubly charged, respectively [19].
Experiments with Ni4 show that B4;N�0 � �0:003 K< 0
[17]. In this case, in order to see the Berry-phase oscilla-
tion, H? must be applied in the xy plane [9] along specific
angles ’�BN; B4;N�. It is also possible to tune the tunnel
splitting by means of Hz. For weak coupling between the
leads and the SMM, we use the standard formalism suitable
to describe a system (SMM) coupled to a reservoir (polar-
ized leads) [20]. The master equation describing the elec-
tronic spin states of the SMM is given in the Born and
Markov approximation by

 _�m;n �
i
@
	�;H
m;n � �m;n

X
l�m

�nWm;l � �m;n�m;n; (3)

where �m;n �
1
2

P
l�Wl;n �Wl;m� � 1=T2 is the total deco-

herence rate which contains the spin decoherence time T2

due to, e.g., nuclear spins and the rates Wm;n of transition
between the states of the SMM. Figure 1 shows the SMM
placed between unpolarized and polarized leads; we rep-
resent available electronic states of the molecule by dis-
crete lines. w�l�#" represent the spin-dependent transition rate
from the l � L;R lead to the SMM and are defined in
Fermi’s golden rule approximation by w�l�# �

2�D��l�# jt
�l�
# j

2=@ and w�l�" � 2�D��l�" jt
�l�
" j

2=@, respectively,

where D is the density of states and ��l�" and ��l�# are
fractions of the number of spins polarized up and down,
respectively, of lead l such that ��l�# � �

�l�
" � 1. t�l�" and t�l�#

are the tunneling amplitudes of lead l. Typical values for
the tunneling rate of the electron range from around w �
106 to w � 1010 s�1 (see Refs. [10,21]).

In order to see coherent spin tunneling (MQC), the
decoherence time must be increased, for example, by
deuteration [22] such that 1=T2 � �Es;�s=@, and at the

same time the contact to the leads must be so weak that
Wm;n � �Es;�s=@. Another possibility is to increase the
transverse magnetic field jH?j beyond the Berry-phase
oscillations. In this case, unpolarized leads can be used
to measure the tunnel splitting between the coherent spin
states �js0i � j � s0i�=

���
2
p

and �js0i � j � s0i�=
���
2
p

by vary-
ing the gate or bias voltage. However, only partially or
fully polarized leads allow us to probe the incoherent
tunneling rate (MQT) �s;�s between the ground states s
and �s for N � 0 and also between s0 and �s0 for N � 1.
As we prove below, both �s;�s and �s0;�s0 contribute to the
total polarized current through the SMM. If an electron is
absorbed (emitted) by the SMM, the total spin state
changes from s (s0) to s0 (s), which differ by the charging
energy Ec due to electron-electron interaction. The sequen-
tial tunneling rates for absorption of an electron in Eq. (3)
for ground states with spin s and s0 and energy differences
��s0;�s � Ec � g�BHz��s

0 � s� in the case of low tem-
peratures are given by

 Ws0;s�
X
l

W�l�s0;s; W�l�s0;s�w
�l�
# fl��s0;s�;

W�s0;�s�
X
l

W�l�
�s0;�s; W�l�

�s0;�s�w
�l�
" fl���s0;�s�;

(4)

and the tunneling rates for the emission of an electron are
given by

 Ws;s0 �
X
l

W�l�s;s0 ; W�l�s;s0 �w
�l�
# 	1�fl��s;s0 �
;

W�s;�s0 �
X
l

W�l�
�s;�s0 ; W�l�

�s;�s0 �w
�l�
" 	1�fl���s;�s0 �
;

(5)

where fl��s0;s� � 	1� e
��s0 ;s��l�=kT
�1 is the Fermi func-

tion. The diagonal elements of (3) yield

 _� s �
i
@
	�;H
s;s �

X
n�s

�nWs;n � �s
X
n�s

Wn;s; (6)

and the off-diagonal elements of (3) yield

 _� s;s0 �
i
@
	�;H
s;s0 � �s;s0�s;s0 : (7)

L
R

Lw Rw

Ec

L
R

Lw Rw

Ec

(a) (b)

FIG. 1. The diagrams show the SMM Ni4 between
(a) unpolarized leads and (b) fully oppositely polarized leads.
The discrete lines represent available electronic states of the
SMM, and Ec is the charging energy.
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Since we are interested in the long time behavior t
1=�m;n, we can set _�s;s0 � 0 in Eq. (7) to obtain
 

_�s �
�
�Es;�s

2@

�
2 2�s;�s
fg�BHz	s� ��s�
g

2=@2 � �2
s;�s

� ���s � �s� �Ws;s0�s0 �Ws0;s�s; (8)

 

_��s�
�

�Es;�s
2@

�
2 2�s;�s
fg�BHz	s���s�
g2=@2��2

s;�s

���s���s��W�s;�s0��s0 �W�s0;�s��s: (9)

The other two equations are obtained by replacing s$ s0.
In the stationary case (t 1=Wm;n), we obtain
 

�s � 	Ws;s0 �W�s0;�s � �s;�s��s0;�s0

�W�s;�s0 �Ws0;s � �s0;�s0 ��s;�s
=	;

��s � 	Ws;s0 �W�s;�s0 � �s0;�s0 ��s;�s

�W�s;�s0 �Ws0;s � �s;�s��s0;�s0 
=	;

(10)

where 	 is a normalization factor such that
P
n�n � 1. The

solutions for �s0 and ��s0 are obtained by replacing s$ s0.
The incoherent tunneling rate is

 �s;�s �
�

�Es;�s
2@

�
2 2�s;�s
fg�BHz	s� ��s�
g

2=@2 � �2
s;�s

:

(11)

We now proceed to define the current through the SMM in
terms of the density matrix. In the case of Ni4, we have s �
4 and s0 � 7=2; therefore, the current reads

 I � e�W4;7=2�7=2 �W�4;�7=2��7=2�: (12)

Taking into consideration the asymmetry of the leads, i.e.,
w�L�#" � w�R�#" , and restricting ourselves to the case of unpo-

larized leads, i.e., ��L�" � ��L�# � ��R�# � ��R�" � 1=2, we
obtain the following conditions for the transition rates:

 W7=2;4 � W�7=2;�4; W4;7=2 � W�4;�7=2: (13)

Substituting the values of �7=2 and ��7=2 into Eq. (12) and
using Eq. (13), we obtain

 

e
Iunp

�
1

W7=2;4
�

1

W�4;�7=2
; (14)

which does not depend on the tunnel splitting energy of the
SMM. Thus, it is impossible to observe Berry-phase oscil-
lations for the case of unpolarized leads and incoherent
spin states. Equation (14) can be interpreted as two resis-
tances in series [16] where the only transitions that con-
tribute to the current through the SMM are 4$ 7=2 and
�4$ �7=2 [see Fig. 2(a)]. In the case of leads that are
fully polarized in opposite directions, i.e., ��L�" � ��R�# � 1

or ��L�# � ��R�" � 1, we get one of the two following con-
ditions for the transition rates, respectively:

 W�4;�7=2 � W7=2;4 � 0 or W4;7=2 � W�7=2;�4 � 0:

(15)

Choosing the case ��L�" � ��R�# � 1 and using the condition
W�4;�7=2 � W7=2;4 � 0, we have

 

e
Ip
�

2

W�7=2;�4
�

1

�4;�4
�

2

W4;7=2
�

1

�7=2;�7=2
; (16)

which reflects the fact that the current through the SMM
depends on the tunnel splittings and can be interpreted as
four resistances coupled in series in a loop [see Fig. 2(b)].
The transitions that contribute to the current through the
SMM in the case of fully polarized leads ��L�" � ��R�# � 1

are 4! 7=2! �7=2! �4.
Notice the clockwise direction of the transition rates

between the different states s, s0, �s0, and �s of the
SMM. If we chose to work with fully polarized leads of
the form ��L�# � ��R�" � 1, then the direction of the transi-
tion rates between states would be the opposite, i.e., coun-
terclockwise. Figure 3 shows the current as a function of
H? for fully polarized leads. If the tunnel splitting �E4;�4

or �E7=2;�7=2 is topologically quenched [see Fig. 4], �4;�4

or �7=2;�7=2 vanishes [see Eq. (11)], which leads to com-
plete current suppression according to Eq. (16). Since this
current blockade is a consequence of the topologically
quenched tunnel splitting, we call it Berry-phase blockade.
Note that the current can also be suppressed by applying
Hz, which follows immediately from Eqs. (11) and (16). If
we consider partially polarized leads (i.e., ��R�" > ��R�# ,

��L�# > ��L�" ), the stationary current reads
 

Ipp � e	�4;�4W�4;�7=2W4;7=2�W�7=4;�4 �W7=2;4�

� �4;�4�7=2;�7=2�W�4;�7=2 �W4;7=2�

� �W�7=4;�4 �W7=2;4�

� �7=2;�7=2W�7=4;�4W7=2;4�W�4;�7=2 �W4;7=2�
=	:

(17)

Ipp shows exactly the same qualitative features as Ip in
Fig. 3 even at a spin polarization of 60%, where the

1N

0N

ss

's
's

Ec

ss

's
's

Ec

(a) (b)

FIG. 2. (a) The transitions of the spin of the SMM in the case
of unpolarized leads. The transitions arise from the sequential
tunneling of unpolarized electrons in and out of the SMM.
(b) The transitions in the case of fully polarized leads in opposite
directions ��L�" � ��R�# � 1.
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suppression of the stationary current due to the Berry phase
is about a factor of 3. Thus, the Berry-phase blockade is
experimentally accessible since recent experiments have
achieved near 100% spin polarization [23]. Sequential and
cotunneling calculations provide exactly the same features
at 0.01 K, but the cotunneling current is very small since it
involves a second-order process in which electrons tunnel
over virtual states. If the temperature is increased, then, at
thermal equilibrium, the population of the excited states of
the SMM will satisfy ��m0 � ��s0 exp	�
�E�m0 �
E�s0 �
, and thus Vgate can tune also the excited states of
the SMM in resonance with the leads, i.e., �L � Em0 �
�R. Consequently, the stationary current involving the

states j �m0i is suppressed by the Boltzmann factor
exp	�
�E�m0 � E�s0 �
.

In summary, we have shown the Berry-phase blockade
for a SMM placed between polarized leads. This behavior
is due to Berry-phase interference of the SMM spin be-
tween different tunneling paths. We have shown that, in the
MQT regime, it is essential to use polarized leads in order
to observe the Berry-phase blockade.
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