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We study electronic transport through an n-p junction in graphene irradiated by an electromagnetic
field (EF). In the absence of EF one may expect the perfect transmission of quasiparticles flowing
perpendicular to the junction. We show that the resonant interaction of propagating quasiparticles with the
EF induces a dynamic gap between electron and hole bands in the quasiparticle spectrum of graphene. In
this case the strongly suppressed quasiparticle transmission is only possible due to interband tunneling.
The effect may be used to control transport properties of diverse structures in graphene, e.g., n-p-n
transistors and quantum dots, by variation of the intensity and frequency of the external radiation.
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Recent success in fabrication of graphene samples [1,2]
has resulted in a stream of publications devoted to the study
of this interesting material. The unique properties of gra-
phene originate from peculiarities of the electron spectrum.
The quasiparticle spectrum ��p� consists of two valleys,
and in each valley there are electron and hole bands cross-
ing each other at some point. Near these points the electron
spectrum is linear,

 ���p� � �vjpj; (1)

where ~p � fpx; pyg is the quasiparticle momentum and v is
the Fermi velocity (only weakly dependent on the momen-
tum p). The quantum dynamics of quasiparticles can ef-
fectively be described by a Dirac-like equation [3]. This
spectrum of quasiparticles in graphene has been experi-
mentally verified by observation of specific gate voltage
dependencies of Shubnikov–de Haas oscillations, conduc-
tivity, and quantum Hall effect [1,2].

Although being different in details, many interesting
phenomena in graphene have their analogues in conven-
tional two-dimensional systems. For example, one can
observe the quantum Hall effect with a specific structure
[1,2] that agrees with theoretical predictions derived from
the Dirac equation [4]. Considering effects of disorder one
obtains not just the localization but an interesting crossover
between the antilocalization and localization behavior
[5,6].

At the same time, unique effects specific only for gra-
phene are also possible. One of the most unusual phe-
nomena is the reflectionless transmission through a one-
dimensional potential barrier of arbitrary strength pre-
dicted in Refs. [7,8] and recently coined as the ‘‘Klein
paradox’’ [8]. The simplest experimental setup suggested
for studying this effect is a graphene-based n-p junction
that can be made by split-gate technique [1,7,8] (see sche-
matic in Fig. 1). The absence of the backscattering of the
massless particles flowing perpendicular to the barrier is
related to the chiral nature of them and to a phenomenon of
‘‘isospin’’ conservation [8]. The perfect transmission of the
quasiparticles can be explained in a natural way using a

standard theory of interband tunneling [9]. Indeed, it has
been shown that the transmission probability P through an
n-p junction is determined by the gap � between the
electron and hole bands as [9]

 P ’ exp
�
�
��2

4@vF

�
; (2)

where F is the slope of an x-dependent electrostatic po-
tential in the n-p junction. Since the undoped graphene is a
gapless material, taking the limit �! 0 leads to the con-
clusion about the ideal transmission of the quasiparticles
flowing perpendicular to the junction.

Such a perfect transmission of quasiparticles through an
n-p junction might lead to difficulties in confining elec-
trons in future graphene-based electronic devices (like
those suggested, e.g., in Ref. [10]). Although in narrow
stripes this difficulty can be avoided due to transversal
quantization [11], the problem may persist in clean wide
2D samples.

At the same time, the reflectionless penetration is rather
sensitive to applying external fields. For example, it is
expected [7] that a magnetic field may reduce the trans-
mission or even confine the electrons [12] for certain non-
homogeneous configurations of the field. It is not difficult
to imagine that the current flowing through the n-p junc-
tions in graphene may not be less sensitive to other external
perturbations.
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FIG. 1 (color online). An n-p junction in graphene. The qua-
siparticle scattering in the absence (dashed lines) and in the
presence (solid lines) of the EF is shown.
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In this Letter we predict and analyze a new interesting
effect arising in the n-p junctions formed in a wide gra-
phene, irradiated by an external electromagnetic field (EF).
The system we consider is represented in Fig. 1. We show
that the radiation leads to a very unusual dependence of the
dc current I on the voltage V applied across the barrier. At
low values of the applied voltage the dependence is linear
but the resistivity extracted from it is much larger than the
one calculated previously [7]. At certain values of the
voltage V the current I through the barrier can even be
completely blocked. The entire EF induced current-voltage
characteristics (CVC) having the N shape is shown in
Fig. 2.

We show that the resonant interaction of the Dirac-like
particles with the y component of EF parallel to the inter-
face leads to formation of a nonequilibrium gap (2�R)
between the electron and hole bands in the quasiparticle
spectrum. This gap and specific nonmonotonic dependence
of the quasiparticle transmission on the energy �0 are
responsible for the unusual form of CVC in Fig. 2.

Formation of such a dynamic gap is well known for two
level systems under radiation [13]. Here we have a con-
tinuous spectrum rather than just two levels but the effect
persists. Like for the two level systems, one can have a
resonance that can be achieved when the frequency ! of
EF satisfies the specific condition @! � 2vjp�x�j, where
p�x� is the coordinate dependent classical momentum of
the quasiparticles. The value of the gap depends strongly
on the intensity S and frequency ! of external radiation.

In the presence of EF the two bands time and coordinate
dependent Hamiltonian has a form [14]

 Ĥ�t� � v�̂
�

p̂�
e
c

A�t�
�
�U�x�; (3)

where U�x� is the electrostatic potential of the n-p junc-
tion, and �̂ � f�̂x; �̂yg are the standard Pauli matrices in
the sublattice space. We assume that the potential U�x�

varies sufficiently slowly, such that the scattering between
different valleys can be neglected. Just for simplicity and in
order to clarify how one comes to the resonant interaction
of quasiparticles with the EF, we consider the case of
external radiation linearly polarized in the y direction.
The electromagnetic wave is characterized by the y com-
ponent of the vector potential as Ay � �Ec=!� cos�!t�, and

E �
��������������
4�S=c

p
is the amplitude of the electric field.

Next we reduce the time-dependent problem described
by the Hamiltonian (3) to a stationary problem by switch-
ing to the rotating frame using the following unitary trans-
formation of the two component Dirac wave functions:

 Û n �
1���
2
p 1 1

� exp�i�̂� exp�i�̂�

� �
exp

�
i!t

�
n�

1

2
�̂z

��
;

(4)

where �̂ � tan�1�p̂y=p̂x�. The transformed Hamiltonian

Ĥ0eff � Û�n HÛn � i@Û
�
n

_̂Un contains, in general, both
static and proportional to exp��2i!t� parts. However,
like for the two level systems [13], in the most interesting
regime of the resonant interaction between the EF and
propagating quasiparticles when

 @! ’ 2vjp�x�j; (5)

only the static part Ĥeff is important, and it is written as

 Ĥ eff�
@�2n�1�!

2 �vjp̂j�U�x� eEv
2!

eEv
2!

@�2n�1�!
2 �vjp̂j�U�x�

 !
;

(6)

where jp̂j �
�����������������
p̂2
x � p̂

2
y

q
. Neglecting the oscillating part of

the Hamiltonian Ĥ0eff corresponds to a rotation wave ap-
proximation [13]. A weak nonresonant interaction of qua-
siparticles with EF neglected here was studied in Ref. [15].
The most important contributions come from almost one-
dimensional electron motion, and we assume in our con-
sideration that px � py. We also assume that the ampli-
tude of the external microwave radiation is comparatively
small, eEv=@� !2.

Equation (6) shows that the radiation results in the
appearance of off-diagonal elements in the operator Ĥeff .
In the absence of the coordinate dependent potential, i.e.,
U�x� � 0, the eigenvalues ~��p� of Ĥeff give the sets of
bands of quasienergies (the Floquet eigenvalues [13]):

 

~� n;��p� � n!�

����������������������������������������������
�vjp�x�j �

@!
2
�2 � �2

R

s
; (7)

where

 2�R � �ev=!�
��������������
4�S=c

p
(8)

is the EF induced nonequilibrium gap. The n are an integer
number 0;�1;�2; . . . .

It is well known [13] that, in the presence of periodic
time-dependent perturbations, the bands of the Floquet

FIG. 2 (color online). The CVC of an n-p junction, in the
presence (solid line) and the absence (dashed line) of EF. It is
calculated by using Eqs. (13) and (16), and the parameters �0 �
0:02 eV, d � 1 �m, @! � �4=3��0, and S � 1 W=cm2.
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eigenvalues replace the quasiparticle spectrum, Eq. (3).
The quantity �R=@ has the same meaning as the famous
Rabi frequency for microwave induced quantum coherent
oscillations between two energy levels (these energy levels
are vjp�x�j and �vjp�x�j in our case).

Next we analyze the quasienergy �0 dependent trans-
mission of quasiparticles P��0� through the potential bar-
rier U�x� formed in the n-p junction. To obtain the
analytical solution we use the quasiclassical approximation
that can be quite realistic for the n-p junctions created
electrostatically. The classical phase trajectories p�x� of
the Hamiltonian Ĥeff are determined by the ‘‘quasienergy’’
conservation law as

 U�x� � ~�n;��p� � �0 : (9)

Using Eq. (9) for n � 0;�1 we obtain three regimes of the
quasiparticle propagation through the barrier. As �0 >
@!=2, the resonant condition (5) is satisfied sufficiently
close to the junction and, therefore, the interaction with the
EF results in the classical reflection of the quasiparticle.
This is shown schematically in Fig. 3(a) by a thick solid
line. The transmission of the particles through the barrier
occurs in the form of the nonequilibrium interband tunnel-
ing between electron and hole Floquet bands, and there-
fore, the effect is a particular example of the dynamical
tunneling [13]. The quasiparticles tunnel from the elec-
tronic ~�e band (n � 0) on the left side to the hole ~�h band
(n � 0) on the right side of the junction. Similarly to the
usual case of the interband tunneling [9] the probability
P��0� of the quasiparticle transmission is determined by
the following process in the ‘‘under barrier region’’: the
quasiparticle moves from the left ‘‘classical turning point’’
(p � @!=�2v�) to the ‘‘branch point’’ (p � @!=�2v� �
i�R=v) in the complex (x; p) plane, and afterwards to the
right ‘‘classical turning point.’’

Further progress can be made by choosing a specific
model for the electrostatic potential of voltage biased n-p

junction (d is the n-p junction width) [9]

 U�x� �

8><
>:
eV x <�d=2� eV=F
F�x� d=2� �d=2� eV=F < x < d=2
U � Fd x > d=2:

(10)

We obtain for quasiparticles flowing perpendicular to the
barrier (py � 0)

 P��0� ’ exp
�
i
2

@

�Z �0=F

�0��R=F
p�dx�

Z �0��R=F

�0=F
p�dx

��
;

(11)

where the complex momenta p� are determined by the
condition of the quasienergy conservation

 �0 � Fx� ~�e�p�� : (12)

Calculating the integrals in Eq. (11) we write the trans-
mission probability of the quasiparticles P��0� as [for a
particular case as �0 	 �U� �0�]

 P��0� ’ exp
�
�
��2

R

@vF

�
; �U� �0�> @!=2; (13)

where the gap 2�R should be taken from Eq. (8).
Equation (13) shows that the external radiation of the
frequency !< 2�U� �0�=@ strongly suppresses the qua-
siparticle transmission.

In the opposite case of a large frequency ! or small
energy �0, !> 2�0=@, the resonance condition, Eq. (5),
cannot be fulfilled, the spectrum remains gapless, and the
quasiparticle transmission is not suppressed. In this case
the transition occurs from the electronic quasiband with
n � 1 to the hole quasiband with n � 0 [see the gray line
in Fig. 3(a)].

There is also a peculiar regime as �U� �0�< @!=2<
�0. The interband tunneling for such quasiparticles is for-
bidden, P ’ 0. Indeed, the quasiparticles (electrons) on the
left side of the junction starting from the conduction quasi-
band have to arrive in the forbidden one on the right side of
the junction [see Fig. 3(b)].

In experiments, the suppression of the quasiparticle
transmission manifests itself as a strong EF induced in-
crease of the resistance of the n-p junction at small volt-
ages V < 
�0 � @!=2�=e. The full stationary CVC of the
n-p junction in the presence of the EF is determined by the
elastic channel; i.e., the energies of quasiparticles on the
left and right sides of the junction are equal. Therefore, we
write the standard expression for the current I flowing
through the ballistic n-p junction as [9]

 I �
4eL

�2�@�2
Z
d�dpyP��; py�

�
tanh

�� eV
kBT

� tanh
�
kBT

�
:

(14)

Here, � is the quasienergy of the electrons and P��; py� is
the quasienergy � and py dependent transmission of the
quasiparticles through the junction. In the case of a wide
junction, when the width of the graphene sample L satisfies

FIG. 3 (color online). The phase trajectories p�x� of the
Hamiltonian Ĥeff corresponding to various cases of interband
tunneling. (a) Tunneling through the dynamic gap �R (thick
solid line, the values of parameters were U � 2 meV and @! �
0:8 meV); the perfect transmission through the point p � 0
(gray solid line, U � 2 meV and @! � 3 meV). (b) The zero
transmission case (U � 1:2 meV and @! � 0:8 meV). d �
2 �m, �0 � 1 meV, and �R � 0:2 meV were also chosen.
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the inequality L�
����������������
@vd=�0

p
, the transmission P��; py�

can be written as

 P��; py� ’ P��� exp
��vp2
y=�@F��; (15)

where P��� is determined by Eq. (13). Calculating the
integral over py, and taking the limit of low temperature
T, we reduce Eq. (14) for the current I to the form

 I � I0

Z �0�eV

�0

d�
�0
P���; (16)

where I0 � eL�0=��@�
2
������������
@F=v

p
is the characteristic cur-

rent of the n-p junction in the absence of the EF [7].
Although the exact shape of the CVC is determined by

diverse factors, e.g., by the preexponent in Eq. (13), we
argue that the EF with the frequency !< 2�0=@ leads to
the N type of the CVC (see Fig. 2). Indeed, as the transport
voltage V is less than the characteristic value V0 � 
�0 �
@!=2�=e the quasiparticle current I flows due to the inter-
band tunneling with the probability determined by Eq. (13)
[see region 1 in Fig. 2 and the schematic of the process in
Fig. 3(a)]. However, in the voltage region V0 < V <
minf2V0; �0g the current I starts to decrease due to the
presence of quasiparticles whose propagation is forbidden
[see region 2 in Fig. 2 and the schematic in Fig. 3(b)]. The
drop of the current becomes especially deep as 2V0 < �0

and the radiation frequency is in the particular range �0 <
@!< 2�0. In the voltage region V > 2V0 the current in-
creases with the voltage V because there is a possibility to
propagate with the perfect transmission for quasiparticles
possessing a small momentum p < @!=�2v� [see region 3
in Fig. 2 and the schematic in Fig. 3(b)].

Finally, we address the question of experimental con-
ditions necessary to observe the predicted effects. An n-p
junction with the typical width d ’ 1 �m in a graphene
sample has to be fabricated. An external radiation contain-
ing the component parallel to the junction of a moderate
intensity S has to be applied. We emphasize that EF need
not be linearly polarized. The EF suppresses the quasipar-
ticle transmission through the n-p junction in the range of
the frequencies of EF ! � �0. This means that for the
Fermi energy �0 ’ 0:02 eV (this value corresponds to dop-
ing levels of a graphene monolayer n � 1011 cm�2 [1,2]),
the EF in the far-infrared region with the frequency less
than 1013 Hz provides a strong decrease of the quasipar-
ticle transmission with the intensity S of the radiation.
Choosing an even smaller external frequency ’ 2

1012 Hz one may use the radiation with a moderate inten-
sity S > 0:4 W=cm2 to observe this effect. Notice here that
the effect is also reduced at small frequencies !<
�0

�������������������
v=�@d�0�

p
because in this case the transport through

the n-p junction is determined by electrons with large
values of py > px.

In conclusion, we have demonstrated that radiation of a
moderate intensity S having the component parallel to the
n-p junction in graphene leads to a pronounced suppres-
sion of the quasiparticle transmission through the junction.
This effect occurs due to formation of a nonequilibrium
dynamic gap between electron and hole bands in the
quasiparticle spectrum as the resonant condition (5) is
satisfied. Propagation of quasiparticles is possible due to
the nonequilibrium interband tunneling. This specific type
of the tunneling is determined by the initial energy of
electrons �0 and, as a result, we obtain an N type of
CVC. The suppression of the quasiparticle transmission
may allow one to control confinement of electrons in
diverse structures fabricated in graphene, like, e.g., n-p-n
transistors, single electron transistors, quantum dots, etc.,
by variation of the intensity S and frequency ! of the
external radiation. We hope that the predicted effect will
find its application to future electronic devices based on
graphene.
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