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Interacting orbital degrees of freedom in a Mott insulator are essentially directional and frustrated. In
this Letter, the effect of dilution in a quantum-orbital system with this kind of interaction is studied by
analyzing a minimal orbital model which we call the two-dimensional quantum compass model. We find
that the decrease of the ordering temperature due to dilution is stronger than that in spin models, but it is
also much weaker than that of the classical model. The difference between the classical and the quantum-
orbital systems arises from the enhancement of the effective dimensionality due to quantum fluctuations.
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Orbital degree of freedom (ODF) in transition-metal
(TM) compounds has attracted much interest for more
than a decade [1,2]. ODF in a TM ion, denoted by M,
corresponds to a direction of the electronic cloud. In a
single M-M bond, ODF is usually quenched so as to gain
bond energy. On the other hand, in a solid, equivalentM-M
bonds with different directions can coexist. When orbitals
are arranged to gain bond energy for one direction, this
configuration is not fully favorable for other bonds. This
causes a type of frustration in a system with ODF. This
frustration is often lifted by the order-by-disorder mecha-
nism due to thermal fluctuations, and a long-range order
(LRO) appears at finite temperature (T). The eg orbital
systems in the perovskite lattice, such as LaMnO3 and
KCuF3, may correspond to this situation.

Recently, much attention has been focused on quantum
effects in the orbital systems. ODF is described by a
quantum operator, e.g., in the case of the eg orbital, pseu-
dospins (PS) Tri

with an amplitude of 1=2 where large
quantum fluctuations are expected. The quantum fluctua-
tions often release frustration even at T � 0 by the quan-
tum order-by-disorder mechanism, and induces LRO.
‘‘Orbital liquid states,’’ proposed in a ferromagnetic
La1�xSrxMnO3 [3] and in a Mott insulating LaTiO3 [4],
are other examples of the quantum-orbital states. Here,
LRO is prevented due to reduction of an effective dimen-
sionality and large quantum fluctuations. This arises from
an interplay between the directional and frustrated inter-
actions and quantum effects.

Interesting aspects are expected when disorder is intro-
duced into the quantum-orbital systems. Disorder of our
interest implies that ions with ODF are replaced randomly
by other ions without ODF. Disorder effects in the quantum
spin systems have been studied intensively and extensively.
Doping of nonmagnetic impurities into the gapped spin
liquids is one of the examples, where quantum spin fluc-
tuations are suppressed and a classical antiferromagnetic
(AF) LRO emerges [5,6]. In the same way, an impurity
without ODF may destroy the quantum resonance of orbi-
tals and stabilize LRO. In a different way from the spin
systems, it is expected that quantum fluctuation weakens

the anisotropic and directional character of the classical
LRO. This may be crucial for dilution effects and the
percolation scheme. Thus, doping of disorder is a good
way to reveal the interplay of the directional and frustrated
interactions and the quantum-orbital fluctuations.

In this Letter, we examine disorder effects in a
quantum-orbital model, termed the two-dimensional
orbital-compass model (OCM) [7–9]. This is a minimal
quantum-orbital model involving the characteristics in the
orbital system, i.e., the directional and frustrated interac-
tion. A long-range correlation for one of the PS compo-
nents appears along the vertical or horizontal directions in
a square lattice, termed the directional order (DO). We
focus on quantum effects in the orbital dilution by using
the quantum Monte Carlo (QMC) method. We have found
that quantum fluctuations from the classical DO state
enhance the effective dimensionality of the system and
makes DO robust against dilution.

An interacting orbital system in a Mott insulator is
generally described by the following model [10,11]

 H � �2J
X
i;‘

�Tri � m̂
‘��Tri�‘̂

� m̂‘�: (1)

PS for ODF is defined by Tri
� 1

2

P
�sd

y
ri�s���0dri�0s,

where dri�s is the electron annihilation operator with spin
s ( �" , # ) orbital � ( � �, �) at site ri. The subscript ‘
indicates the bond direction in a crystal, and the factor m̂‘

is the unit vector in the PS space. This interaction explicitly
depends on the bond direction ‘ [1,10]. When we take
m̂‘ � �sin�2n‘3 ��; 0; cos�2n‘3 ��� with �nx; ny; nz� � �2; 1; 0�,
Eq. (1) describes the three-dimensional eg-orbital system
[10,12]. OCM in a two-dimensional square lattice [11] of
the present interest corresponds to another choice of m̂‘ �
ê‘ with the unit vector ê‘. The explicit form of OCM
associated with the orbital-less impurities is given as

 H � �2J
X

i;‘��x;z�

T‘riT
‘
ri�‘̂

"ri"ri�‘̂
: (2)

Here, "ri takes one for an orbital ion and zero for an
impurity. Since the sign of the interaction J is gauged
away by rotating Tri with respect to the y axis, we take it
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to be positive. This Hamiltonian without dilution ("ri � 1
for 8 i) is invariant under the following two-symmetry
operations [8,13]. (i) The global fourfold symmetry: PS’s
at all sites and the crystal lattice are rotated by �=2,
simultaneously, with respect to the y axis. (ii) The local
symmetry at each column and row: the z (x) component of
all PS’s at each column (row) along the z (x) axis are
flipped, i.e., Tz�x�rx;rz ! �T

z�x�
rx;rz for each rx�rz�. In addition,

in the classical uniform PS state, there is the following
continuous symmetry: (iii) the global PS direction is arbi-
trary in the Tx-Tz plane.

Let us explain in more detail the symmetry (ii) which is
unique in OCM. This symmetry operation at a row rz is
done by the operator Prz�	

Q
rx�

z
rx;rz�, with the Pauli ma-

trices �r, as P�1
rz �

x
rx;rzPrz � ��

x
rx;rz and P�1

rz �
z
rx;rzPrz �

�zrx;rz . On an equal footing, the symmetry operation at a
column rx is done by the operator Qrx �

Q
rz�

x
rx;rz . The

operators Prz and Qrx commute with H , and Prz’s com-
mute with each other as well as Qrx’s, but �Qrx; Prz� � 0.
The energy eigenvalues are characterized by the eigen-
value set of Prz ’s (p1; . . . ; pL) or that of Qrx ’s
(q1; . . . ; qL) in a L
 L�� N� square lattice. That is, at
least, there are L conserved quantities. Since P2

ri � 1 and
Pyri � Pri , pi � �1. It is easily shown that the conven-
tional site-diagonal order parameter N�1P

rhTri is not in-
variant under this local-symmetry operation. The Elitzur’s
theorem states that the only operators with a nonzero
expectation value are locally gauge invariant. According
to this theorem, it is shown that the site-diagonal LRO does
not occur [14]. Instead, a kind of LRO, termed the direc-
tional order, appears. This order corresponds to a breaking
of the global fourfold symmetry (i) explained above. This
nematiclike order has been studied by using the correlation
function Czzrx 	 limrz!1hT

z
rx0
Tzrxrzi at T � 0 [13] and q �

N�1P
r�T

z2
r � T

x2
r � in the classical OCM [7]. We introduce

D, as an order parameter of DO, given by D �
1

N�1�x�

P
r�T

z
rT

z
r�ẑ"r"r�ẑ � TxrTxr�x̂"r"r�x̂�. This repre-

sents the correlation of Tz along the z axis or that of Tx

along x. Since D commutes with Prz and Qrx , being differ-
ent from Tr, it is possible for hDi to be finite.

To examine OCM numerically with and without vacan-
cies, we adopt QMC method for a finite-size cluster. There
is no negative-sign problem in OCM. The QMC calcula-
tions have been performed on a square lattice of L
 L
sites (L � 14–18) with periodic-boundary conditions. The
Suzuki-Trotter formula is applied to decomposition of the
density matrix, e��H � limn!1��ie��H i=n�n, where we
assume H is decomposed into the local part as H �P
iH i. The Trotter number n is chosen to be from 12 to 22

and the extrapolation of the results to n � 1 is performed.
At low temperatures for T < 0:04J, we perform the simu-
lation with n � 60–72. We take, at maximum, 10 000 MC
steps for measurement after 3000 MC steps for thermal-
ization. Physical quantities are averaged over 20–60 MC

samples at each parameter set. We have checked by MC
calculations with 106 MC steps, which is much longer than
the integrated autocorrelation time determined by the bin-
ning analyses, that the order parameter values in the
present calculation are reliable within numerical errors.
The ordering temperature (TDO) of DO is estimated from
the finite-size scaling analyses of the fourth-order cumu-
lant of the order parameter. This is termed the Binder
cumulant defined by Q � 1� hD4i

3hD2i2
[7,15]. It is known

that Q-T curves for several system size L cross at the
critical temperature TDO.

First we show the numerical results in OCM without
vacancies. Temperature dependence of

����������
hD2i

p
[	 �D�T�] for

several L is presented in Fig. 1(a). Around T=J � 0:17,
�D�T� grows with decreasing T and is saturated to about

0.13 below T=J � 0:12. With increasing L, this depen-
dence becomes steep, but the saturated value of �D�T� at
low T does not change much. Below T=J � 0:07, �D�T�
seems to decrease. We have performed careful numerical
calculations with the larger Trotter numbers n � 60–72.
As shown in the inset of Fig. 1(a), �D�T� takes about 0.125
down to T=J � 0:015. Therefore, the reduction of �D�T� in
low T is an artifact due to the small n. Temperature depen-
dence of the Binder cumulant Q is presented in Fig. 2.
From the definition, we expect that, in the limit of L � 1,
Q � 0 for T > TDO and Q � 2=3 for T < TDO. The Q-T
curves for the several system sizes cross around T=J �
0:15 corresponding to the temperature where �D�T� grows.
We conclude that DO is realized in the quantum OCM and
TDO � 0:150� 0:003. The saturated value of �D�T� at low
T is about half of the classical value of 1=4. This reduction
is much stronger than that in the quantum AF Heisenberg
model with S � 1=2 in a square lattice [16]. That is, DO in
quantum OCM is not similar to the simple classical picture.
This is due to large quantum fluctuations which induce
correlations between columns or rows. We note that the

site-diagonal order parameter M	
�����������������������������
h�N�1P

rTr�
2i

q
de-
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FIG. 1 (color online). (a) Temperature dependence of the
directional order parameter �D�T� at x � 0 for various system
sizes L. The inset shows �D�T� at low temperatures obtained in
the calculation with the large Trotter numbers (�). � are the
same data with those in the main panel. (b) �D�T� for various
impurity concentrations.
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creases with increasing L. This is in contrast to the
eg-orbital model [8,12,17].

Now we present the dilution effects in OCM. The results
on �D�T� for several x are shown in Fig. 1(b). We observe
that �D�T� gradually increases with decreasing T and satu-
rates to about 0.1 at x � 0:06. The temperature where �D�T�
rises is reduced with doping. The saturated value of �D�T�
becomes small by doping in spite of the factor �1� x��1 in
the definition of D. The analyses for Q work well at x �
0:06, as shown in the inset of Fig. 2, where TDO=J is
identified to be 0:113� 0:005. We have checked that, at
x � 0:25, the Q-T curves for several L do not cross each
other down to T � 0:01J.

The main result of the present work, the x dependence of
TDO in the quantum OCM, is shown in Fig. 3. For com-
parison, we also plot the ordering temperature TCL of DO
in the classical OCM, and the Curie temperature TIsing on
the S � 1=2 Ising model on a square lattice. We observe
that TDO decreases monotonically with x and seems to take
zero around x � 0:15 (	xc). As well as the diluted eg
orbital systems [12,18], the critical concentration xc is
much smaller than the percolation threshold 0.41 on the
square lattice [19]. It is worth noting that the decrease of
TDO is much stronger than that in TIsing, but is weaker than
TCL. In other words, quantum effects make DO robust
against dilution.

To understand the dilution effects in the quantum OCM,
we present a rigorous treatment of the dilute OCM in two-
coupled chains along the z axis, that is, a two-leg ladder
OCM. As mentioned previously, the energy eigenstates are
classified by the eigenvalue set (p1; . . . ; pL) of the operator
Prz � �zrLrz�

z
rRrz , where rR�rL� indicates the x coordinates

of the right (left) chain in the ladder. We consider one of the
doubly degenerate ground states: the state characterized by
p1 � � � � � pL � 1 which is degenerate with the state by
p1 � � � � � pL � �1. In a row rz of the ladder, the eigen-

states are jTzrLrzT
z
rRrzi � j""i and j##i, or their linear combi-

nations j�i 	 1��
2
p �j""i � j##i�. There are relations

�TxrLrzT
x
rRrz�j�i � �

1
4 j�i, T

z
rLrz j�i�

1
2j
i, and TzrRrz j�i�

1
2j
i. Therefore, within the subspace of p1 � � � � � pL �
1, we introduce a new PS operator Srz , and show corre-
spondences �TxrLrzT

x
rRrz� !

1
2S

z
rz and TzrL�rR�rz ! Sxrz . The

state j�i (j�i) is the up- (down-) eigenstate of Szrz . As a
result, OCM in this subspace is mapped onto the
transverse-Ising model in a single chain [20]: H eff �

�4J
P
rzS

x
rzS

x
rz�1 � J

P
rzS

z
rz . Now, one vacancy is intro-

duced at a site (rL, r0
z). Since, in the row r0

z , we have Pr0
z
�

�z
rRr0

z
, the energy eigenstates in this row, j� "i and j� #i,

belong to the different subspaces, and TrRr0
z

is replaced by a
C number in each subspace. Thus, OCM in
the two-leg ladder with one vacancy is denoted by the fol-
lowing model: H eff � �4J

P0
rz

SxrzS
x
rz�1 � J

P
rz�r0

z
Szrz �

J�Sx
r0
z�1
� Sx

r0
z�1
�, where

P0
rz

indicates a sum of rz except

for r0
z and r0

z � 1. The sign � (�) in the third term
corresponds to the state j� #i (j� "i) at the site (rR, r0

z).
This corresponds to the model of the two transverse-Ising
chains where the external field �J along the Sx axis is
applied at edges of the chains, i.e., the r0

z � 1 and r0
z � 1

sites. In the original language, this field acts on Tz
rR�rL�;r0

z�1

and Tz
rR�rL�;r0

z�1
, and it enhances the correlation hTzriT

z
rji

around the vacancy in OCM. This situation does not de-
pend on the sign of the third term in H eff , since Tz � 1=2
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FIG. 3 (color online). Impurity concentration x dependence of
the ordering temperature. � are for TDO in the quantum OCM,
and � are for TCL in the classical OCM. For comparison, the
ordering temperature in the Ising model (�) are also plotted.
Bold arrow indicates the percolation threshold xc in a square
lattice. The inset shows the ordering temperature TC in the
quantum XY model with S � 1=2 (�) and that in the classical
one (�) in a three-dimensional cubic lattice. System size is
chosen to be N � 323 at maximum. The continuous
imaginary-time algorithm is utilized.
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FIG. 2 (color online). Temperature dependence of the Binder
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(�1=2) is favored in the case of �J (�J), and the corre-
lation is enhanced in both of the cases.

Based on the above picture, we discuss first the differ-
ence between TDO and TIsing in Fig. 3. Consider a situation
in a two-dimensional square lattice where two vacancies
are located closely in a same row. As suggested above, the
correlation of Tz is enhanced around the vacancies. On an
equal footing, the correlation of Tx is enhanced around the
vacancies located closely in the same column. A certain
number of domains, where Tz or Tx correlation is en-
hanced, coexist in a system, and competition between
them reduces �D�T� and TDO. To confirm this picture, we
calculate the local PS correlation function around the
impurity defined by Czz�ri� � 1

N�1�x�

P
jhT

z
ri
Tzrj
i (Fig. 4).

Two pairs of vacancies introduced in a 20
 20 site cluster
are denoted by X1�2� and Z1�2� in the figure. It is clearly
shown that Czz�ri� is enhanced between X1 and X2, and
almost vanishes between Z1 and Z2. These are not seen in
dilute spin models.

Now we focus on quantum effects in dilution, i.e.,
discrepancy between TDO and TCL. In the classical DO
state at T � 0, the system is decoupled into the indepen-
dent Ising chains along the x or z axis, although DO is the
two-dimensional order where the fourfold symmetry is
broken. The rapid decrease of TCL by dilution reflects the
quasi-one-dimensional nature of DO, and at finite T, weak
two dimensionality is recovered due to the thermal fluctu-
ations. The quantum fluctuations from the classical DO
state bring about a coupling between the independent
chains and increases the effective dimensionality of DO
even at low T. This causes a type of resonant states
between the independent chains, and thus DO becomes
robust against dilution. This remarkable quantum effect is
unique in the orbital system; we compare the x dependence

of the Curie temperatures TC in the quantum and classical
XY models in a cubic lattice (the inset of Fig. 3). It is seen
that the difference between the two are much smaller than
that in OCM.

In summary, we have studied the dilution effects in the
quantum-orbital system where the interaction is directional
and frustrated. As a minimal quantum-orbital model, the
two-dimensional OCM is analyzed by using the QMC
method. The magnitude of the DO parameter is largely
reduced from its classical value. That is, a classical picture
of DO, i.e., a vertical (horizontal) alignment of Tz (Tx), is
considerably modified by quantum fluctuations. The re-
duction of the ordering temperature due to dilution is
stronger than that in the spin model, but is much weaker
than that of the classical OCM. Quantum fluctuations
increase the effective dimensionality of the system and
make the order robust against dilution. The present results
are in contrast to the conventional sense that quantum
fluctuations destroy LRO.
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 20 site cluster. Four vacancies X1�2�

and Z1�2� are represented by �. Temperature is chosen to be
T=TDO�x � 0� � 1:27.
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