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A unique parabolic relation is observed to link skewness and kurtosis of around ten thousand density
fluctuation signals, measured over the whole cross section of a toroidal magnetized plasma for a broad
range of experimental conditions. All the probability density functions of the measured signals, including
those characterized by a negative skewness, are universally described by a special case of the Beta
distribution. Fluctuations in the drift-interchange frequency range are necessary and sufficient to assure
that probability density functions can be described by this specific Beta distribution.
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Plasma turbulence and associated anomalous transport
constitute main limiting factors for the performance of
magnetic fusion devices. Fluctuations leading to a turbu-
lent state and possible methods to control them have been
investigated for many years [1]. A statistical description of
plasma turbulence [2] is appropriate to capture some of the
underlying physical mechanisms. In particular, a signifi-
cant effort is dedicated to finding universal aspects in this
statistical description [3], i.e., a common behavior for all
spatial and temporal scales and/or for different physical
systems and experimental conditions. The knowledge of
some of these universal properties may lead to a better
understanding of the impact of different types of micro-
instabilities on the macroscopic behavior of the plasma,
e.g., in terms of fluctuation induced transport, self-
similarity, or intermittency. In addition, it would generalize
and extend the impact of the experimental results obtained
on different individual machines. Such a quest for univer-
sality is pursued in turbulence research for a variety of
systems, including the Earth oceans [4] and atmosphere
[5], the solar corona [6], and in magnetically correlated
systems [7]. In magnetic fusion plasmas, the universality of
the probability density function (PDF) is investigated in
various devices and experimental conditions [8—10], only
using local density measurements at the plasma edge or in
the scrape-off layer (SOL). Despite the common observa-
tion that PDFs of density fluctuations are non-Gaussian,
there is no consensus on a unique PDF that could model all
the experiments.

In this Letter, we address the question of the universality
of plasma fluctuations associated with drift-interchange
turbulence by measuring statistical properties that are
common to a large number of electron density signals
(=10000), taken across the entire plasma cross section
and over a broad range of experimental conditions. The
experiments are performed in TORPEX [11], a toroidal
device with major and minor radius R =1 m and a =
0.2 m, and a toroidal magnetic field up to 0.1 T. A small
vertical magnetic field component =4 mT is superim-
posed to partly short-circuit the vertical electric field due
to VB and curvature drifts and reduce the fast particle
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losses [12]. Highly reproducible plasmas are created and
sustained for up to 1.5 s by means of waves in the electron
cyclotron range of frequencies [13]. Measurements of ion
saturation current are obtained over the whole plasma cross
section (comprising source, edge, and confinement region)
in a single plasma discharge, with a spatial resolution of
3.5 cm and at a sampling frequency of 250 kHz with a
hexagonal array of 86 Langmuir probes, named HEXTIP
[14]. In these experiments, temperature fluctuations are
small compared to density fluctuations, so ion saturation
current fluctuations are assumed to be directly proportional
to electron density fluctuations. The microwave power and
the toroidal magnetic field are kept constant, while differ-
ent neutral gases are used (H, He, Ar). The vertical mag-
netic field and the neutral gas pressure are varied leading to
variations of the ion gyroradius, the plasma shape, and the
ion-neutral collision frequency. As a consequence, for all
signals, the range of time averaged densities 7 and electron
temperature T, extends between 1.4 X 10" and 3.7 X
10" m™3 and 1 and 10 eV, respectively. The range of
fluctuation levels is 1% = én/n < 95% where 6n is the
rms fluctuating density. The observed density fluctuations
are associated with drift-interchange turbulence, generated
in regions of bad field curvature and convected away by the
E X B fluid motion [11,15]. Thus, the nature of these
fluctuations is relevant for edge/SOL turbulence studies,
though the achieved range of density fluctuations, for in-
stance, is large compared to what can be covered in toka-
maks, even across several different devices.

Two examples of experimental signals representing the
time evolution of the electron density are shown in
Fig. 1(a). The top trace is characterized by bursty positive
events, hence by a PDF with positive skewness (normal-
ized third order moment of the PDF), while the bottom one
displays negative bursts, corresponding to a negatively
skewed distribution. For all the signals, the skewness and
the kurtosis (normalized fourth order moment of the PDF)
are estimated and plotted against each other [5], Fig. 1(b).
We observe that a significant fraction of the signals
(=30%) are characterized by a negative skewness. Previ-
ous measurements in tokamak plasmas [9] reported a
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FIG. 1. (a) Example of experimental signals having a positive

(top) and negative (bottom) skewed distribution. (b) Kurtosis
versus skewness computed for the 8966 experimental signals.
The fitting 2nd order polynomial (solid gray line) is also plotted.
Inset: Joint probability of K and S for the experimental signals.

change in the skewness sign from positive to negative
values when crossing the last closed flux surface from
the SOL region into the plasma edge. The data in
Fig. 1(b) are least-square fitted by the quadratic polynomial

K = (1.502 £ 0.015)8% + (2.784 = 0.019). (D

The uncertainty on the estimated coefficients provides the
95% confidence bounds. This interval is illustrated on the
graph with error bars. The inset of Fig. 1(b) shows that
approximately 95% of the experimental data is contained
within these error bars. The fact that the skewness and the
kurtosis of fluctuations can be characterized by a quadratic
relation K = aS? + B has been shown in very different
physical situations such as for the concentration of a pol-
lutant diffused and convected by the turbulent atmosphere
[5] or for the surface elevation of wind waves in nonlinear
interactions [16]. Such a link between third and fourth or-
der moments is valid for a large set of PDF families [17].
When this relation is satisfied, an estimate of the coeffi-
cient a would bring information of the underlying physical
mechanism. This emphasizes the importance to identify a
particular parabolic relation when trying to determine a
theoretical PDF that reproduces experimental distributions.
Because of the functional relation between the kurtosis and
the skewness, all the analytical PDFs that are defined with
constant S and K (normal, logistic, Rayleigh, uniform,
exponential, etc.) cannot universally reproduce the experi-
mental measurements. Furthermore, a quadratic polyno-

mial rules out distributions (triangular, error, Student’s,
etc.) for which either K or § varies, but the other moment
is constant. Finally, the robustness of the least-square fit
Eq. (1) excludes distributions (Weibull, log-normal, Wald,
F, etc.) that have a similar relationship between K and S but
with different coefficients [17]. The polynomial in Eq. (1)
is very close to the relation between the kurtosis and the
skewness associated with the Gamma distribution: K =
1.58% + 3, although the skewness of the Gamma distribu-
tion is by definition always positive [17]. One distribution
that can admit both positive and negative skewness is the
Beta distribution [17]. It has a very versatile shape and is
commonly used to model theoretical distributions and is
applied in a wide variety of situations like fecundability
studies, proportions in gas mixture, risk analysis, concen-
tration of contaminants in soil, concentration of pollutants
in the atmosphere, and quality control [17]. For a random
variable n, the general Beta distribution is defined by

(n—n)P~Hny, — n)1!
B(p, g)(nj, — nypra=t”

where n; = n = ny,; p, ¢ >0, and B is the Beta function.
Its first four associated moments are defined by

w=I[p/(p+qln, —n)+n, (3a)
o? = pq/l(p + @*(p + g+ Dln;, — ny)?%, (3b)

S=2g-p)/(p+a+DJ(p+q+D/(pa) G

_3p+tqg+D2(p+ g+ pelp+q—6)]
pa(p+q+2)(p+q+3)

The relation between the third and fourth moments is not
trivial since it depends on parameters p and ¢, but S and K
do not depend explicitly on the boundaries of the random
variable n. Moreover, for any (p, ¢g) it can be shown that
[17]

Fg(n; p, g, ny, ny) = 2

K

(3d)

1+ 8%(p,q) =K(p,q) =3+ 1.55%(p, q). 4)

The upper limit is reached when g — +oo for positive
skewness and when p — +oo for negative skewness. The
Beta distribution tends to the Gamma one when nj; — + 00
together with g — +oo. The experimentally measured
skewness and kurtosis are very close to the upper limit of
the domain of variation for a Beta distribution; thus, either
p or g has to be large.

According to Eq. (2), the Beta distribution is defined
with four parameters: p, ¢, n;, and n;. One specificity of
this distribution is the bounded range of variation of the
random variable. This is compatible with the variation of
the plasma density which is necessarily bounded between
zero (no plasma) and the neutral gas density (fully ionized
plasma). Nevertheless, for each experimental time series,
we restrict this range of variation by the following choice
n; = Ny, and ny, = ng,, where n.;, and n,,, are the
minimum and the maximum of each signal. This choice
implies F(n < ny,) = F(n > ny,,) = 0 where F(n) is the
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experimental probability density function, and can be
partly justified by the statistical stationarity of the signals.
Figure 2(a) represents the maximum and minimum of a
given signal obtained for increasing portions of the whole
time series plotted as a function of the duration of such
portions, AT. After a fast variation at small time series
duration (AT = 1 ms), the minimum and the maximum
are slowly varying. In order to show that our time series
duration is sufficiently long to reach a statistical stationar-
ity, the time evolution of n.;, or n.,, is fitted by an
exponential characterized by a time constant 7. The histo-
gram of the two time constants for a subset of approxi-
mately 2500 signals is plotted in Fig. 2(b). Almost all the
time constants are smaller than 1 ms, which is much shorter
than the complete time record of the signals. The statistical
stationarity of the experimental data is also reflected in the
fact that the two coefficients in Eq. (1) change only by
~3% as the time series is shortened down to 10 ms.

Having fixed the upper and lower boundaries for each
signal, only two free parameters, p and ¢, remain for the
Beta distribution. These are estimated by inverting
Egs. (3a) and (3b) and inserting the experimental values
of the mean, variance, minimum, and maximum of each
signal: p = a[@(l — @)/¢* — 1]and g = (1 — @)[a(1 —
la)/&z - 1] with o= (Iu’exp - nmin)/(nmax - nmin) and
72 = 0axp/[(Nmax = Nimin)*]. The joint distribution of the
estimated parameters p and ¢ is represented in Fig. 3(a).
These parameters are large (typically >100); thus, S and K
for a Beta distribution, Egs. (3c) and (3d), are close to the
upper limit in Eq. (4) and are compatible with the experi-
mental third and fourth moments. A posteriori, our choice
for parameters n; and n;, can be further justified by the fact
that a non-negligible fraction of negative skewness, esti-
mated for a Beta PDF with these p and ¢, is conserved.
Setting n;, — +00 would exclude negative skewness and
setting n; = 0 would artificially increase the fraction of
negative skewness.

An illustration of the good agreement between the ex-
perimental PDF and the Beta distribution is shown in
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FIG. 2. (a) Maximum (O) and minimum ((J) of an experimen-
tal signal for different time series durations AT. Their variation
can be approximated with an exponential fit (inset). (b) Distri-
bution of the characteristic times for the maxima 7, (solid line)
and for the minima 7., (dashed line) for a subset of 2434
signals.

Figs. 3(b) and 3(c) for a negative and a positive skewed
experimental distributions. For all the signals, we compute
the residual r; = 3 ,[F(n) — F;(n)]* between the experi-
mental distribution F(n) and several analytical PDFs
F;(n), including the Beta distribution, estimated with
Mexp and oy, The probability distribution function of
the residuals is shown in Fig. 3(d). The Beta distribu-
tion provides the smallest average residual as well as a
better fit than any other tested PDFs in the region of small
residuals (r; = 0.1). All the experimental PDFs can be
universally reproduced by a limiting case of the Beta
distribution. In this limit, the Beta distribution is equivalent
to Fr(n) for positive skewness and to Fr(2u — n) for
negative skewness, where wu is the mean value of the
density n and Fy is the Gamma distribution defined by
Fr(n) = 6~*n* e /% /T(a) [17]. The Gamma distribu-
tion has been previously reported to be compatible with the
PDF of experimental signals measured in the SOL of a
tokamak and characterized by positive skewness [10].
Having established the existence of a universal PDF
shape that describes the experimental distributions, we
address the question of which physical mechanisms con-
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FIG. 3. (a) Joint distribution of parameters p and gq.

(b),(c) Two experimental distributions from argon plasmas
(gray line) with a negative (b) and positive (c) skewness. The
Beta distribution (solid line) and the Gamma distribution (dashed
line) are also plotted. (d) Distributions of the residuals between
all the experimental PDFs and several analytical distributions.
The average value of the residuals is indicated in the legend.
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a) - low pass Ar b bution Fr, depending on the sign of the signal skewness.

o g pass, = Wﬁqu These observations are consistent with the picture of a

g f / e unique physical mechanism producing events that would
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FIG. 4. (a) Normalized residuals for different cutoff frequen-
cies of low-pass and a high-pass filters. (b) Normalized averaged
spectra for the three neutral gases.

tribute to such behavior. In particular, we investigate which
frequency range of the fluctuations spectrum, if any, is
necessary and sufficient to recover the Beta distribution.
For the three neutral gases used, approximately 800 signals
have been filtered at different cutoff frequencies (0.1 =
f. = 50 kHz) with both low-pass and high-pass filters. For
all the cutoff frequencies, the skewness and the kurtosis of
the filtered signals are estimated. For each f., the residual
between the kurtosis K(f,.) and the values estimated for the
skewness S(f..) with Eq. (1) is computed and normalized to
the original residual for the unfiltered signals, Fig. 4(a). As
f. increases (decreases) for the low-pass (high-pass) filters,
the difference between the original moments and those
associated with filtered signals tends to disappear. For the
three gases, if only the low (f. = 1 kHz) or high (f, =
20 kHz) frequency contributions to fluctuations are kept,
the experimental fit described by Eq. (1) cannot be satis-
fied. In addition, the difference between the plasmas made
from different neutral gases is reflected in the averaged
spectra normalized to the integral of the spectra between 0
and 125 kHz, Fig. 4(b). The density fluctuations contained
in the measured frequency range of drift-wave instabilities
(1 = f =10 kHz) [15] must be retained to recover this
Beta distribution. Note that no extension to broader special
regions is necessary, ruling out an interpretation of the
fluctuations’ statistical properties as the result of a fully
developed turbulence.

In summary, we have analyzed electrostatic fluctuations
measured over the entire cross section of a simple toroidal
magnetized plasma, including the source region for insta-
bilities, regions where nonlinear mode coupling takes
place, and regions where the unstable modes are convected
by the E X B flow. The PDF of the density fluctuations at
all locations is found to have a universal character, in the
sense that a unique relation links the skewness and the
kurtosis, and that it can be described by the same analytical
distribution. This is a special case of the general Beta
distribution F(x), taking the form of the Gamma distri-

with drift-wave turbulence are necessary to assure that
probability density functions can be described by this
specific Beta distribution. A more complete physical
understanding of plasma turbulence in the present experi-
ments requires extensive self-consistent numerical simula-
tions of drift-interchange turbulence using nonlinear
equations, e.g., based on the Hasegawa-Wakatani model.
Nevertheless, the present results may have two consequen-
ces on the study of the underlying physics: the unique
relation between moments of the plasma density PDF
may lead to a low-order statistical closure of the chain of
coupled equations [2], and the same global characteriza-
tion of the statistical properties of fluctuations, applied to
numerical simulations outputs, provides a valuable tool for
the validation of the physical basis of the simulation model.
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