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A three-dimensional nonlinear dynamo process is identified in rotating plane Couette flow in the
Keplerian regime. It is analogous to the hydrodynamic self-sustaining process in nonrotating shear flows
and relies on the magnetorotational instability of a toroidal magnetic field. Steady nonlinear solutions are
computed numerically for a wide range of magnetic Reynolds numbers but are restricted to low Reynolds
numbers. This process may be important to explain the sustenance of coherent fields and turbulent
motions in Keplerian accretion disks, where all its basic ingredients are present.
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The most natural explanation for the efficient outward
angular momentum transport inferred from observed ac-
cretion luminosities in accretion disks is that these objects
are turbulent [1]. In magnetized disks, turbulence is likely
triggered by the magnetorotational instability (MRI; see
[2]). When a mean magnetic field with nonzero net flux
perpendicular to the disk plane is imposed, the instability
takes the form of a two-dimensional channel flow which
breaks down into three-dimensional MHD turbulence [3]
as a result of secondary Kelvin-Helmholtz instabilities [4].
This simple field configuration, however, may not be rele-
vant to all accretion disks. Recent observations have, for
instance, demonstrated that the magnetic fields in the in-
nermost regions of some disks are probably not created by
an external object such as the central accreting body, but
are intrinsic to the disk [5]. Their precise origin, however,
remains largely unknown. Understanding the nonlinear
saturation of the MRI in the absence of an externally
imposed magnetic field or, more generally, when there is
no net magnetic flux threading through the disk, proves to
be a complicated task because one needs to explain in that
case how the magnetic field, whose presence within the
disk is permanently required for the generation of MHD
turbulence, can be sustained against dissipation. Local
numerical disk simulations in the absence of a net mag-
netic flux [6,7] suggest that a dynamo process possibly
relying on the MRI of toroidal magnetic fields [8] may be
at work, but a detailed theoretical understanding of such a
scenario is still lacking.

In this Letter, we report the discovery of self-sustaining
dynamo action in magnetized, spanwise rotating plane
Couette flow (PCF) in the Keplerian regime (linearly stable
from the purely hydrodynamic point of view) characteristic
of accretion disks. The phenomenology of this magneto-
hydrodynamic (MHD) process is analogous to that of the
self-sustaining process (SSP) thought to be responsible for
the transition to turbulence in hydrodynamic shear flows
[9,10]. It relies on three fundamental physical effects: (i)
linear amplification of zero-net-flux toroidal (azimuthal in
the accretion disk terminology) magnetic field induced by

the distortion of a weak poloidal (radial and vertical) seed
field by the background shear (differential rotation); (ii)
three-dimensional linear instability (MRI) of the toroidal
magnetic field; (iii) regeneration of the poloidal field owing
to the nonlinear feedback of the MRI modes.

Even though linear processes are essential to the mecha-
nism, either via transient linear growth or linear instability,
the whole process is fundamentally nonlinear since the
self-sustaining loop cannot be closed without nonlinear
feedback. This notably means that there is no kinematic
regime for the dynamo, which is therefore subcritical: an
initial finite-amplitude, zero-net-flux magnetic field distur-
bance is required for the dynamo to operate. This contrasts
with the externally imposed field problem in which infini-
tesimal disturbances grow exponentially due to the MRI.
To the best of our knowledge, this is the first instance of an
explicit nonlinear subcritical dynamo solution. We first
describe the three steps of the process, construct steady
nonlinear solutions for Keplerian PCF at various magnetic
and kinetic Reynolds numbers, and, finally, discuss the
relevance of our results to accretion disk theory.

We consider PCF for an incompressible fluid with unit
density, constant kinematic viscosity � and magnetic dif-
fusivity �. The flow is driven by two countermoving rigid,
no-slip, perfectly conducting walls located at y � �d and
is rotating at a constant rate � along the spanwise (vertical)
z axis perpendicular to the linear background shear flow
VB�y� � Syex. It is taken to be spatially periodic in both
streamwise (toroidal, x) and spanwise (z) directions, with
periods Lx � 2�d=� and Lz � 2�d=�. Using 1=S as a
time unit and the channel half-width d as a length unit, we
define a Reynolds number Re � Sd2=� and a magnetic
Reynolds number Rm � Sd2=�. This configuration repre-
sents an idealized local model of a differentially rotating
Keplerian accretion disk provided that the rotation number
R� � �2�=S equals �4=3 (anticyclonic Rayleigh-stable
rotation). Owing to PCF symmetries, we look for nonlinear
three-dimensional steady solutions of the incompressible
MHD equations (Navier-Stokes equation with a Lorentz
force and induction equation) for magnetic and velocity
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field perturbations b and v of Keplerian PCF. We first
consider [step (i)] of the process. We define a stream
function  �y; z; t� and a flux function ��y; z; t� to describe
the mean poloidal fields �vp � r� � ex� and �bp � r�

��ex�, where overbars stand for x averaging, and denote the
x dependent part of the fields by v 0 and b0. The toroidal and
poloidal components of the x-averaged induction equation
read

 @t �bx � �by � ex � r� �v� b� �
1

Rm
� �bx; (1)
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Equation (1) has a linear induction source term �by due to
the presence of the background shear, which makes it
possible to generate an O�1� toroidal magnetic field from
a weak O�1=Rm� poloidal field (this results mathemati-
cally from the non-normality of the linear operator). This
axisymmetric process for two-dimensional, three-
component (2D-3C) fields is often referred to as the
�-effect in dynamo theory and is the MHD analog of the
algebraic amplification of streaks (streamwise velocity
field) in nonrotating hydrodynamic shear flows, known as
the lift-up effect in the fluid dynamics literature [11].
Unless some three-dimensional nonlinear mechanism re-
generates the poloidal field, this linear process can, how-
ever, only be transient: for purely two-dimensional
configurations, Eq. (2) is a simple advection-diffusion
equation with no source term for �, which must therefore
decay resistively on an O�Rm� time scale. This is just a
restatement of Cowling’s theorem for an axisymmetric
(x-independent here) system. To obtain a SSP, we must
therefore consider the x-dependent, three-dimensional in-
stabilities of the transiently amplified toroidal component
of the 2D-3C field [step (ii)] and their nonlinear feedback
in the poloidal equation [step (iii)]. Three-dimensional,
nonlinear steady solutions are possible only if the non-
linear interaction term on the right-hand side of Eq. (2) has
the ability to regenerate the original seed poloidal field. For
the hydrodynamic SSP, the three-dimensional instabilities
are inflectional instabilities of the spanwise-modulated
finite-amplitude streaks. In the Keplerian MHD problem,
a natural instability candidate is a three-dimensional MRI
of the O�1� toroidal magnetic field.

We use a three-dimensional nonlinear continuation code
based on Newton iteration to test this scenario quantita-
tively. The code is similar to those used to study hydro-
dynamic SSPs [10,12] and has been tested extensively with
standard nonlinear problems [13]. Collocation on a Gauss-
Lobatto grid is used in y and a Fourier representation (with
dealiasing) is used in x and z. The Newton solver relies on
the linear algebra library LAPACK to solve real systems
with O�20 000� unknowns. An iterative generalized eigen-
value problem solver from the ARPACK library is used to

address 2D linear stability problems. The convergence of
our solutions (	10�8 for energy) has been thoroughly
checked by looking at Chebyshev and Fourier spectra
and by comparing results obtained at different resolutions.

We adopt a forcing strategy [10], which first consists in
artificially forcing nonlinear steady 2D-3C solutions and in
computing their three-dimensional instability modes. One
must then check that the nonlinear feedback of these modes
can take over the forcing to obtain three-dimensional non-
linear unforced solutions. For the MHD problem, an ap-
propriate forcing is a toroidal electromotive force (EMF)

 EMF x�y; z� �
A

�Rm2 cos
�
�y
2

�
cos�z; (3)

applied to Eq. (2) with A � O�1�, which compensates for
the resistive decay of an O�1=Rm� poloidal magnetic field
that in turn generates an O�1� toroidal field. Figure 1
depicts a 2D-3C magnetic field solution of the forced non-
linear MHD equations obtained with our Newton solver.

We then consider the stability of forced 2D-3C MHD
flows with a dominant O�1� toroidal magnetic field to
infinitesimal perturbations with exp�i�x� dependence,
and compute the associated MRI eigenmodes with our
linear eigenvalue solver (the Alfvén continuum is removed
here owing to viscous and resistive effects). For the forcing
term (3), steady solutions have three symmetries which are
used to reduce computational costs: first, they either have
reflect (R) z! �z or shift-and-reflect (SR) �x; z� ! �x�
Lx=2;�z� symmetry which both turn (vx, vy, vz) into (vx,
vy, �vz) and (bx, by, bz) into (�bx, �by, bz). They also
have either z-shift (S) z! z� Lz=2 or double-shift (DS)
symmetry �x; z� ! �x� Lx=2; z� Lz=2� which both turn
(v, b) into (v,�b). Finally, owing to the invariance of PCF
under z rotations by �, all solutions have shift-and-rotate
�x; y; z� ! �Lx=2� x;�y; z� Lz=2� symmetry, which
turns fields (hx, hy, hz) into (� hx, �hy, hz) (all trans-
formations require appropriate x and z phase choices). The

FIG. 1 (color online). 2D-3C magnetic configuration induced
by the artificial toroidal EMF (3), � � 1 and perfectly conduct-
ing boundary conditions. bx is represented on a color scale
(black to white from �max to max) and (by, bz) by arrows.
Rm � 750, Re � 10, A � 1:5, max�bx� � 1:006, and
max�by� � 0:00195. �Ny; Nz� � �32; 32�.
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� dependence of the growth rates of several modes for the
2D-3C configuration of Fig. 1 is plotted in Fig. 2. A (y, z)
cut through the marginal (R,S) mode is shown in Fig. 3.

In order to find a good initial guess to discover steady
three-dimensional solutions with the Newton solver, one
must select a marginally stable mode and check whether or
not the x-averaged EMF due to its nonlinear interactions
can take on the role of the artificial EMF (3) to sustain the
poloidal field. This depends strongly on the selected MRI
mode and on its streamwise wave number �, much like in
the hydrodynamic problem [12]. If the feedback is bad, the
amplitude A of the artificial EMF (and therefore the toroi-
dal component of the 2D-3C field) is adjusted and a 2D-3C
flow marginally unstable to a MRI mode with slightly
different � is recalculated. This way, we identify a (R,S)
MRI eigenmode (Fig. 3), whose nonlinear interactions
create a toroidal EMF that has an interesting positive
correlation with the artificial EMF (Fig. 4). Note that
considering the feedback in the 2D-3C momentum equa-
tion is not important to find an interesting MRI mode since
the goal is to replace an artificial forcing term imposed in
the 2D-3C induction equation only.

We finally attempt a continuation with respect to the
forcing amplitude to find unforced (A � 0) solutions. The
code is initialized with the 2D-3C base flow of Fig. 1 plus a
small amount of the three-dimensional (R,S) MRI mode of
Fig. 3, and A is set to a slightly smaller value than that used
to force the 2D-3C flow. The solver converges to a fully
three-dimensional forced solution, demonstrating that the
bifurcation to three-dimensional solutions is subcritical
with respect to A. Further confirmation of the crucial role
of the MRI mode feedback is obtained by performing
similar calculations initialized with marginal MRI modes
with negative feedback (such as the (SR, DS) mode of
Fig. 2 at � � 0:355), which reveals supercritical behavior.
The subcritical (R,S) branch can be followed down to A �
0 (Fig. 5), at which point (black dot) nonlinear interactions
due to the x-dependent part of the solution fully take over
the forcing term. The A � 0 point is therefore a fully three-
dimensional subcritical nonlinear steady solution of the
original MHD equations with no forcing (Fig. 6). The x
dependence of the solution, unlike for A � 1:5, can no
longer be described by a single Fourier mode.

FIG. 2. Growth rates of the most unstable three-dimensional
MRI eigenmodes for the 2D-3C configuration with O�1� toroidal
field shown in Fig. 1, as a function of the streamwise wave
number �. The legend indicates the symmetries of each mode.

FIG. 3 (color online). Magnetic field in the x � 0 plane of the
near marginal (R,S) MRI eigenmode with � � 0:375, depicted
by a black dot in Fig. 2. Same representation and parameters as
in Fig. 1.

FIG. 4. Full line: normalized shearwise profile of the kz � �
component of the toroidal EMF created by the self-interactions
of the three-dimensional � � 0:375 MRI mode of Fig. 3. Dashed
line: normalized shearwise profile of the artificial EMF (3).

FIG. 5. y-integrated amplitude of the kx � 0:375, kz � 0 com-
ponent of vy for three-dimensional steady forced solutions, as a
function of the forcing amplitude A. �Nx;Ny; Nz� � �12; 32; 32�.
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As shown in Fig. 7, this nonlinear steady solution can be
continued to large Rm but exists only in a narrow range of
Re. The reason for this could be that only at low Re do
marginally unstable MRI modes of the toroidal magnetic
field originate from a steady bifurcation. At larger Re,
marginal MRI modes systematically arise from a Hopf
bifurcation instead: pairs of steady eigenvalues corre-
sponding to modes with the same symmetry collide and
turn into complex-conjugate pairs for increasing Re. To
discover similar dynamo solutions at larger Re, it may
therefore prove necessary to consider time-dependent
MRI modes instead of steady ones. This is unfortunately
numerically far more challenging, since the symmetries
used to reach decent three-dimensional resolutions are
broken when the MRI modes turn into complex-conjugate
pairs.

We have presented an instance of self-sustaining, non-
linear dynamo solution in Keplerian PCF, whose critical
Rm ’ 670 is comparable to that found in zero-net-flux
simulations (another Rm definition is used in [7]).
Preliminary direct spectral numerical simulations seem to
confirm independently the existence of this solution, whose
structure is dominated by a coherent zero-net-flux toroidal
magnetic field. We also discovered a (R, DS) branch,
which makes it probable that many solutions with different
symmetries exist. Such coherent structures are strictly
speaking not turbulence but, like the hydrodynamics SSP,
they probably act as organizing centers of the dynamics in
phase space [10] and could play an important role in

triggering and sustaining MHD turbulence in magnetized
Keplerian disks, where all the basic ingredients of the
dynamo are present. Hopefully, this idealized study will
be helpful to uncover the details of the dynamo in more
realistic setups.
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FIG. 7. Continuation with respect to Rm for Re�10, ��;�� �
�0:375; 1�. Inset: continuation with respect to Re for Rm � 1500
(full line), Rm � 3000 (dashed line). �Nx; Ny; Nz� � �8; 24; 32�.

FIG. 6 (color online). Cuts through the unforced (A � 0) non-
linear steady solution of Fig. 5 (� � 0:375, black dot). Top: bz at
z � Lz=2. Bottom: bx (color scale) and (by, bz) (arrows) at x �
Lx=4.
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