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We investigate the distribution of the occupation time of a particle undergoing a random walk among
random energy traps and in the presence of a deterministic potential field. When the distribution of energy
traps is exponential with a width Tg, we find in thermal equilibrium a transition between Boltzmann
statistics when T > Tg to Lamperti statistics when T < Tg. We explain why our main results are valid for
other models of quenched disorder, and discuss briefly implications on single particle experiments.
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Particles diffusing randomly in condensed phase envi-
ronments, with a very broad distribution of trapping times,
are found in diverse physical systems [1]. When the aver-
age trapping time is infinite, such processes lead to anoma-
lous diffusion and relaxation which are well investigated,
for example, in the context of dynamics of ensembles of
charge carriers in amorphous semiconductors [2–4]. More
recently, similar dynamics was investigated in single par-
ticle experiments, where the problem of ensemble averag-
ing is removed [5–8]. Bouchaud [9] showed that annealed
dynamical processes, described by power law trapping
times with a diverging mean trapping time, break ergodic-
ity and hence usual statistical mechanics does not apply
[10]. Intuitively, one can argue that if the averaged trapping
time diverges, measurements can never be made for time
long enough, in order for usual statistical mechanics to
apply. Since, in these days, single particle experiments
exhibit power law trapping times, it is natural to ask
what theory replaces the usual Boltzmann theory for such
systems.

In this Letter we classify deviations from Boltzmann
statistics, for random walks on a lattice with quenched
disorder, in terms of statistics of occupation times.
Consider first simple Brownian motion in a deterministic
binding potential Udet�x�. The occupation time tOcc is the
time the particle spends in the domain x1 < x< x2. For
ergodic dynamics in thermal equilibrium, the occupation
fraction �p � tOcc=t is given by Boltzmann statistics

 �p!

R
x2
x1
e�U

det�x�=Tdx

Z
; (1)

in the limit of long measurement time t, Z �R
1
�1 exp��Udet�x�=T�dx is the normalizing partition func-

tion and T is the temperature. In many single particle
experiments, in disordered systems, the potential energy
sampled by the particle is random [5–7]. Majumdar and
Comtet [11] considered the Sinai model and showed that
the occupation fraction may exhibit large fluctuations from
one sample of disorder to another. Here we consider the
problem of the distribution of the occupation time, in the
context of the quenched trap model, finding strong devia-

tions from Boltzmann’s theory. As we will show, the gen-
erality of our theory is based on the observation that
random partition functions, of random systems which ex-
hibit anomalous diffusion, are distributed according to
Lévy statistics which leads to a new type of non-
Boltzmann statistical law. Previously, nontrivial occupa-
tion times were measured for blinking quantum dots driven
by a laser field [8], a system far from thermal equilibrium.
Possible verification of our theory in the laboratory is
discussed at the end of the Letter.

Quenched trap model.—We consider a particle under-
going a one-dimensional random walk on a quenched
random energy landscape on a lattice [9,12,13]. Lattice
points are on x � 0, a, 2a, . . . , L, where a is the lattice
spacing. On each lattice point a random energy Ex is
assigned, which is minus the energy of the particle on
site x, so Ex > 0 is the depth of a trap on site x. The
energies of the traps fExg are independent identically dis-
tributed random variables, with a common probability
density function (PDF) ��E� � �1=Tg� exp��E=Tg�. Such
density of states leads to anomalous diffusion [14,15], and
aging [9,15–17] when T < Tg. The model was used to
describe dynamics of many systems: transport of electrons
in amorphous materials [2–4], single molecule pulling
experiments [7], rheology of soft matter [18], e.g., emul-
sions, relaxation in glasses [9,12,19], and green fluorescent
protein dynamics [20]. Because of an interaction with a
heat bath, the particle may escape site x and jump to one of
its nearest neighbors. The average time it takes the particle
to escape from site x is given by Arrhenius law �x �
exp�Ex=T�. Notice that small changes in Ex lead to an
exponential shift in �x. In particular, it is easy to show
that the PDF of the waiting times is

  ��� �
T
Tg
���1�T=Tg� � 	 1; (2)

so when T < Tg the average waiting time diverges. In
addition to the random potential energy, a deterministic
field may act on the particle, which leads to a biased
random walk. Let qx (1� qx) be the probability of jump-
ing left (right) from site x, respectively. The master equa-
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tion for the population on site x, Px is

 

dPx
dt
� �

1

�x
Px �

qx�1

�x�1
Px�1 �

1� qx�1

�x�1
Px�1: (3)

For nonbiased random walks qx � 1=2, while for uni-
formly biased random walks qx � 1=2 is a constant. The
boundary conditions are reflecting q0 � 0 and qL � 1. The
local bias qx is controlled by a deterministic potential field
Udet
x . It is usually assumed that detailed balance conditions

hold so that the dynamics of the populations reach thermal
equilibrium, described by Boltzmann’s canonical en-
semble. For the trap model this well-known condition leads
to

 

qx
1� qx�1

� exp
�
�
�Udet

x�1 �U
det
x �

T

�
: (4)

For example, if a constant driving force field F acts on the
system qx � 1=�1� exp�Fa=T�� [16].

We consider a single realization of disorder in the ther-
modynamic limit where the measurement time t! 1
before the system size is made large. One can show that
the equilibrium of populations is described by Boltzmann
statistics, which is not surprising since we used the detailed
balance condition. The total time the particle spends in the
domain x1 
 x 
 L is the occupation time tOcc. This do-
main is called the observation domain. For a finite system,
there exists a minimum of the energy, and the process is
ergodic; hence, the occupation fraction for a single disor-
dered system is

 �p �
tOcc

t
!

ZO

ZO � ZNO ; (5)

where

 ZO �
XL
x�x1

exp
�
�
�Udet

x � Ex�
T

�
(6)

is the partition function of the observation domain and
ZNO �

Px1�a
x�0 exp���Udet

x � Ex�=T� is the partition func-
tion of the rest of the system. The occupation fraction is a
random variable which varies from one system to the other;
the goal of this Letter is to calculate its distribution.
However, first three comments are in place. (i) As men-
tioned, if we have only a single realization of disorder the
occupation fraction is given by Boltzmann statistics. The
question then is whether the occupation fraction a self-
averaging quantity. Namely, we investigate many realiza-
tions of disorder, for each the occupation fraction is a
random variable and hence we construct its distribution.
This case corresponds to single molecule experiments
where one may track independently a large number of
individual molecules, each one interacting with a unique
random environment [6]. (ii) The occupation time in
Eq. (5) describes rather generally the occupation time of
a particle in a random energy landscape and is not unique
to the specific dynamics of the quenched trap model. For
example, we could add random barriers [21], which would

not alter the statistics of occupation times in equilibrium.
(iii) Previous work [10] considered the occupation times of
the continuous time random walk (CTRW) model (an-
nealed model), unlike the quenched trap model, in the
CTRW model ergodicity is broken and the system is not
spatially disordered.

From Eq. (5) we see that the distribution of the occupa-
tion fraction �p is obtained in principle from the distribu-
tions of two independent random partition functions ZO

and ZNO. Let GZO�z� and GZNO�z� be the PDFs of ZO and
ZNO, respectively. Then the PDF of the occupation fraction
f� �p� is found using Eq. (5)

 f� �p� �
Z 1

0
dzzGZNO��1� �p�z�GZO� �pz�: (7)

We now consider the problem of finding GZO�z�.
If the deterministic part of the field Udet

x is a constant,
Eq. (6) shows that ZO is a sum of independent identically
distributed random variables, and then Gauss–Lévy limit
theorems apply. In contrast, when Udet

x is not a constant
then we are dealing with the problem of summation of
nonidentically distributed random variables and, hence, in
what follows we modify the familiar limit theorems for the
case under investigation.

Let n be the number of lattice points in the interval
�x1; L�. We consider the scaled random variable ~ZO �

ZO=n1=� with � � T=Tg and T < Tg. The Laplace z! u
transform of the PDF of ~ZO is found using Eq. (6) and ��E�

 Ĝ ~ZO�u� � exp
�XL
x�x1

ln
�
 ̂
�
ue�T=U

det
x

n1=�

���
; (8)

where  ̂�u� �
R
1
0 exp��u�� ���d�. We now consider the

limit of large n. We use the small u expansion

 ln� ̂�u�� � �Au� �
�

1� �
u� � � � ; (9)

where A � �j�����j, and from Eqs. (8) and (9), we find
 

Ĝ ~ZO�u� � exp
�
�
Au�

n

XL
x�x1

e�U
det
x �=T

�
�u

�1� ��n1=�

XL
x�x1

e�U
det
x =T � � � �

�
: (10)

In the continuum limit of a! 0, n! 1, and L� x1 � an
remaining finite, we may replace the summation with
integration and find the stretched exponential

 Ĝ ~ZO�u� � exp
�
�A

R
L
x1
e�U

det�x�=Tgdx

L� x1
u�
�
; (11)

where Udet�x� is the deterministic field in the continuum
limit. The inverse Laplace transform of Eq. (11) is the one-
sided Lévy stable law.

A similar calculation is made for ZNO. We invert the
Laplace transform in Eq. (11), switch back to the original
variable ZO instead of the scaled one ~ZO, and find using
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Eq. (7)

 f� �p� �
1

�R�1=�

Z 1
0
dzzl���1� �p�z�l�

�
�pz

�R�1=�

�
; (12)

with

 R �
PB�Tg�

1� PB�Tg�
: (13)

In Eq. (12) l��z� is the one-sided Lévy stable PDF whose
Laplace pair is l̂��u� � exp��u��. PB�Tg� is Boltzmann’s
probability of finding the particle in the observation do-
main calculated using the deterministic field with a tem-
perature Tg

 PB�Tg� �

R
L
x1

exp��Udet�x�=Tg�dx

Z�Tg�
: (14)

Solving the integral Eq. (12), we find the Lamperti [22]
PDF
 

f� �p� �
sin��
�


R �p��1�1� �p���1

R2�1� �p�2� � �p2� � 2R�1� �p�� �p� cos��
:

(15)

Equations (13) and (15) are the main results of this Letter,
soon to be discussed in detail, which are valid in the glassy
phase T < Tg.

For T > Tg and in the same limit we have the usual
canonical behavior

 f� �p� � �� �p� PB�T��: (16)

Equation (16) shows that when T > Tg the disorder plays
no role, indicating the reproducibility of Boltzmann’s sta-
tistics Eq. (1), when the disorder is weak.

Equations (13) and (15) give the distribution of the
occupation time, which is the generalization of the usual
Boltzmann law Eq. (16). The parameter R is called the
asymmetry parameter, and if R � 1, f� �p� is symmetric.
The asymmetry parameter R is calculated by the usual
type of integral over the Boltzmann factor; however, now
the temperature Tg is the relevant temperature not T [see
Eq. (13)]. Roughly speaking, there are two sources of
fluctuations: the disorder characterized by Tg, and the
temperature T. Hence when T < Tg the relevant tempera-
ture is the ‘‘temperature of the disorder’’, that is Tg. For
example using Eqs. (13), (15), and (16) the average occu-
pation fraction has the following surprising behavior,

 h �pi �
�
PB�Tg� T < Tg
PB�T� T > Tg:

(17)

The average occupation fraction freezes in the colder
glassy phase of T < Tg in the sense that it does not depend
on the temperature T, for any type of deterministic binding
field.

In Fig. 1 we demonstrate our results comparing our
theory with numerical simulations on a lattice. We consider
the situation where the deterministic field is Udet�x� � F x
and 0< x, and the observation domain is 0< x< Tg=F .
In Fig. 1(a) with T > Tg we see that the distribution of
occupation fraction is very narrow with �p � PB�T �
3Tg� � 1� e�1=3, indicating that the disorder is not im-
portant. In contrast, when T < Tg the behavior of the
occupation fraction changes dramatically and �p is non-
self-averaging and random.

Equation (15) shows that when T=Tg � 1 the PDF of
occupation fraction is essentially composed of two delta
functions centered on �p � 1 and �p � 0. Namely, for some
samples of disorder, the particle is within the observation
domain during all the observation time t ( �p � 1) and in
other samples the particle is never in the observation
domain ( �p � 0). This behavior is easy to understand,
when T ! 0 the minimum of the random potential energy
is the most populated, and this minimum can be found
either in the observation domain or out of it. As shown in
Fig. 1(c), for small but finite T we have a nontrivial
bimodal U shape of the PDF, which reflects this low
temperature behavior. As the temperature increases we
start seeing a third peak in the PDF of the occupation
fraction being developed [see Fig. 1(b)]; so when T ! Tg
the self-averaging phase is approached.

In Fig. 2 we show the averaged occupation fraction
versus temperature T using the same deterministic poten-
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FIG. 1 (color online). The PDF of the occupation fraction for
the deterministic field U�x� � F x. (a) For T � 3Tg we find a
delta function centered on the value given by Boltzmann’s
statistics. When T=Tg � 0:7 [panel (b)] the nontrivial distribu-
tion of the occupation fraction has three peaks while for T=Tg �
0:3 [panel (c)] the distribution is bimodal. The � symbols are
simulations and the curve is the theoretical prediction [Eq. (15)]
without fitting. We used F � 1, Tg � 1, a � 10�5 the observa-
tion domain 0< x< 1, system size 20, and 3 104 disordered
systems.
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tial field as in Fig. 1. For T > Tg the average occupation
fraction is PB�T� and hence, as the temperature is de-
creased, the average occupation time increases, since the
particles condensate closer to the minimum of the deter-
ministic field which is on x � 0 as the temperature is
reduced. However, when T � Tg we see in Fig. 2 a type
of phase transition in the behavior of the averaged occu-
pation fraction, and it does not depend on T when T < Tg,
as predicted by our theory Eq. (17).

Let us discuss the generality of our results beyond the
quenched trap model. We have divided our system into
two, the observation domain and the rest of the system. The
partition functions of these domains are random variables,
due to the randomness of the underlying Hamiltonian. Our
results show that when the partition functions are distrib-
uted according to Lévy statistics, then the Lamperti distri-
bution Eq. (15) describes the statistics of the occupation
time. It is natural that partition functions of random sys-
tems are Lévy distributed [23], since a partition function is
a sum over energy states and if these states are random and
uncorrelated the Lévy limit theorems must apply. Indeed,
as we will show in a future publication, our main result,
Eq. (15), describes also occupation time statistics in mod-
els with quenched random geometry: the random comb
model, which is a model of a random walk on a loopless
random fractal; and models of anomalous diffusion of a
particle on structures with distributed dangling bonds in the
presence of bias [1,24,25]. Finally, we note that our theory
is valid also in dimensions higher than 1.

It is interesting to verify in experiment our theoretical
predictions, for example, using the experimental set up of
Wong et al. [5]. There the anomalous diffusion of magnetic
beads in a random polymer network was observed. The
measured [5] exponent � for the power law distribution of

the waiting times  ��� / ���1���, depends on the ratio of
the size of the bead and the linear size of the mesh of the
network l (roughly a �m). We suggest adding an external
binding field, for example, a harmonic trap, Udet�x� �
kx2=2. The dimensionless thermal length

���������
T=k

p
=l should

be larger than unity so that many traps are included in the
observation domain. The occupation time of single parti-
cles can then be measured, and according to our theory for
quenched disordered systems, its distribution is given by
Eq. (15) with R � PB�Teff �

1�PB�Teff �
with 1=Teff � �=T and not by

Boltzmann’s law. Besides the basic issue of a possible
generalization of Boltzmann’s law for disordered system,
such measurement can provide insight into the nature of
disorder, for example; whether it is quenched or annealed.
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FIG. 2 (color online). The averaged occupation fraction versus
T=Tg. When T > Tg, h �pi � PB�T�, namely, the usual Boltzmann
theory applies, while for T < Tg, h �pi � PB�Tg�, which is inde-
pendent of the temperature T. The lines are theoretical predic-
tions [Eq. (17)] and the diamonds are simulation results with no
fitting.
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