
Colloid Particles in the Interaction Field of a Disclination Line in a Nematic Phase

David Pires, Jean-Baptiste Fleury, and Yves Galerne*
Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 (CNRS—Université Louis Pasteur),
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On the basis of linear hydrodynamics, we analyze the trajectory of particle-hedgehog systems, attracted
by a �1=2 disclination (defect line) in a nematic liquid crystal. We show that, as with the interactions
between like-particles, the interaction between a particle and a disclination has an electrostatic analogue,
the splay replacing the electric field, except for the symmetry properties. The disclination thus attracts the
beads along nonradial tracks and in a self-assembling process, or template mechanism, may build a
microscopic necklace with them.
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In a recent pioneering work [1,2], a new force has been
evidenced between colloids dispersed in a nematic liquid
crystal. This force originates from the elastic energy of the
distortions that the particles produce around them in the
nematic phase. It is a long-range force of the order of a few
pN, that naturally complement the long-range forces al-
ready available in the ordinary liquids, as the van der Waals
force, or as the magnetic force if the particles have mag-
netic properties. Experimental [3–6], theoretical [7], and
numerical studies [8] have then been devoted to this ne-
matic interaction. They evidence different behaviors ac-
cording to the surface treatment on the particles, to their
radius, R, and to their separating distance, r. In the case of
small homeotropically treated particles (R� 1 �m), a
topological point defect, a hedgehog, accompanies the
particles at a distance �R [2] and produces a short-range
repulsion between like particles. At large distances, r�
R, the problem may be linearized, and an analogy to
electrostatics is possible, the particle and its companion
defect being equivalent to a dipole moment [1]. Like
particles therefore interact through a 1=r3 interaction po-
tential. If the particles are small, R� 1 �m, the hedgehog
may change into a disclination loop, surrounding the par-
ticle as a Saturn ring [8]. The elastic interaction energy
between like particles is then of the quadrupolar type at
large distance, �1=r5.

Interestingly, the nematic interaction is able to build
different types of objects, as chains of droplets, parallel
or at 30� to the nematic director n, depending on the
homeotropic or tangential anchoring conditions onto the
droplets, respectively [9]. As recently shown, the chains of
particles may again self-assemble parallel to one another to
produce more sophisticated objects, as 2D colloidal crys-
tals [3], that could exhibit interesting photonic properties
[10].

In this Letter, we present an experimental study of the
nematic force in the unexplored case of the interaction of a
colloidal particle with a 1D system, namely, a 1=2 discli-
nation line. We show that the electrostatic analogy at large
distances is basically correct but incomplete since the

elastic potential of a disclination line exhibits a lower
symmetry than its electrostatic analogue, and consequently
produces nonradial forces onto the particles. Interestingly,
these forces may be used to build new microscopic objects.

Disclination lines are prepared in a 150 �m-thick cell of
4-pentyl-40-cyanobiphenyl (5CB) nematic liquid crystal
[Fig. 1(a) and 1(b)]. We produce them on applying antago-
nistic planar anchoring conditions onto the cell plates, by
means of PTFE rubbings parallel and perpendicular to the
y-axis, respectively, in the y > 0 and y < 0 regions [11].
On slowly cooling down the sample from the isotropic
phase, we thus obtain disclination lines, oriented perpen-
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FIG. 1 (color online). (a) Side view of a nematic sample with
antagonistic rubbing conditions, parallel to x in the y < 0 region,
parallel to y in the y > 0 one. A wedge disclination line is thus
forced along the z axis. (b) Nematic field in the plane z � 0 in
the case of a �1=2 line. (c)–(e) Photographs (width 50 �m)
taken before the bead is captured by the disclination line at times
t � �240 s, �56 s, �2 s, respectively. The particle is indicated
with a grey (red) arrow, and the line by a white (yellow) one.
Note that the line is slightly distorted by the attraction exerted by
the particle.
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dicular to the cell plates and distributed along the x-axis,
alternately of �1=2 and �1=2 strengths, their sum being
topologically null. More precisely, they are wedge discli-
nations because the director keeps everywhere parallel to
the (x; y) plane. They may be separated several hundred
micrometers from one another. This ensures that the parti-
cles in suspension experience the interaction from only one
disclination line, being at least an order of magnitude
closer to this line than to the others. The particles we use
are homeotropically treated silica beads of radius R�
1 �m available from Colochrom. We disperse them in
the nematic bulk at a low density of about 103 particles
per mm3, which corresponds to a dispersion of one particle
in a 100 �m range.

Most of the experimental studies that have been per-
formed yet to determine the interparticular nematic force
make use of optical tweezers, in order to hold and to set the
two particles in interaction at the right positions. The
attractive (or repulsive) force is directly measured in this
way, the tweezers strength being calibrated [3]. Or, one of
the particles is allowed to move, and its trajectory is
determined and analyzed [4,5]. Though exciting at first
sight, the optical tweezers reveal in practice not to be so
simple to use in nematic liquid crystals as expected.
Because the optical tweezers need a light beam with a
narrow waist, of the order the particle size or smaller,
one has to use a wide aperture lens with a short-focusing
distance, which restricts the action of tweezers to a few-
micrometer depth inside the nematic sample. However, at
this distance, screening effects due to the anchoring of the
director onto the plates may partly alter the nematic force.
This effect is particularly important in the case of the very
long-range interactions we study here. Another drawback
comes from the birefringence of the nematic phase that
produces two different focus points that together come to
widen the laser trap [4]. Moreover, local temperature gra-
dients and direct reorientation effects on the director, re-
spectively, due to the heating effect of light and to the
torque exerted by its electric field, complicate the use of
optical tweezers in the nematic cells. So, though previous
experimental studies (e.g. see Ref. [3–5]) show that it is
possible to overcome these difficulties, it seemed to us
more convenient to simply let the particles move toward
the disclination from their initial place and to use a tracking
technique to determine the interaction potential of the
defect line.

In the case of small Ericksen and Reynolds numbers, the
motion of the particle may be related rather simply to the
interaction potential between the particle and the disclina-
tion. The Ericksen number, Er � �Rv=K (v being the
particle velocity and � and K the average viscosity and
Frank elastic constants of 5CB, respectively), is the ratio of
the viscous over the elastic energies. When Er� 1 (here
Er� 10�2), the director field is essentially driven by the
elastic energy, and its viscous coupling to the velocity

gradients may be neglected. Both the director and the
velocity fields are then uncoupled, so that the director
keeps independent of the flow. If moreover the Reynolds
number is small (here Re� 10�10), the flow is simply
laminar around the particle, and a tensorial Stokes equation
relates v to the viscous drag on the particle. So, under both
the conditions Re and Er� 1, the hydrodynamics of a
particle moving in a nematic liquid crystal may be line-
arized [12]. We may therefore project the equation of
motion of the particle independently on the vertical
z-axis, the X and Y-axes, respectively, along n and per-
pendicular to n and z. Along the z-axis, the weight and the
buoyancy force make the particle slowly fall down.
Provided that the particle keeps inside the central part of
the cell from experiencing screening effects from the
plates, we may forget this vertical fall, and focus our
attention on the horizontal motion. After a short transitory
regime (� 10�7 s), the elastic force exerted by the discli-
nation line onto the particle, Fdis, is balanced by the
projection of the viscous drag in the (x, y) plane, which
is given by the Stokes equation:

 F drag � 6�R��XvX � �YvY	; (1)

where �X and �Y are the effective viscosities, and vX and
vY are the vectorial components of the velocity, along n
and perpendicular to it, respectively. Their ratio is esti-
mated to be worth �Y=�X � 1:64 in the 5CB nematic
liquid crystal [13].

At distances large enough to the repulsive potential of
the hyperbolic defect to be neglected, and in the one-elastic
constant approximation, the electrostatic analogy proposed
by Lubensky et al. [1,2] shows that the elastic interaction
potential U exerted by the disclination onto the particle is
given by the coupling of the dipole moment of the particle-
hedgehog system, P, with the splay distortion produced by
the disclination. The interaction is therefore proportional to
KP 
 n�r 
 n�. Let us recall that the coupling term to the
bend distortion, P 
 �n r n�, vanishes since the
particle-hedgehog system is oriented along the director
n, i.e., P is parallel or antiparallel to n. So, the total
interaction potential reduces to

 U�
"KP
r

cos���1� "�	; (2)

where " � �1=2 or �1=2 is the strength of the disclina-
tion line, and � is the azimuthal angle of the particle
relative to the y axis [Fig. 1(b)]. Interestingly, the corre-
sponding force that drives the particle, Fdis � �rU, is not
radial. The trajectories of the particle are therefore not
rectilinear. They may be calculated, in the permanent
regime, on writing that the drag force exactly balances
the attraction force. In the one-viscosity constant approxi-
mation, i.e., for �X � �Y , they are given by the equation
r � r0j sin��1� "�j�1�"�

�2
(Fig. 2). Remembering that P is

proportional to the particle radius to the square, R2 [2], we
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may finally write the radial component of Fdis as

 Fdis � AK
�
R
r

�
2

cos���1� "�	; (3)

with A being a dimensionless coefficient. This equation
shows that there are no interactions in the direction � � 0,
nor in the case of the �1=2 line, in the directions, � �
��=3 too. According to the sign of the cosine term and to
the parallel or antiparallel orientation of the particle-
hedgehog system in the director field, i.e., to the sign of
P, and consequently of A, the interaction is attractive or
repulsive. In this latter case, the particle is repelled away
from the line and gets out of the observation field.

Experimentally, we proceed in the following manner.
The silica beads that we initially dispersed in the isotropic
phase get stuck after a while onto the ITO-coated glass
plates. We then cool down the cell in the nematic phase
and, contrarily to Ref. [14], we do not observe a strong
repulsion of the particles from the plates. To inject them
into the nematic bulk, we take profit of the small electric
charge (� 100 electronic charges) that they carry in 5CB
[15], and we apply a short electric pulse on the electrodes
(10 V, 1 ms). Both the Coulomb force and the overall
hydrodynamic flow generated by the electric pulse push
the particles towards the nematic bulk. Several attempts are
necessary to set a particle right at an intermediate depth in
the cell, closer from the disclination line than 50 �m in
order that the screening effects from the plates may be
neglected. After a few seconds, the hydrodynamic flow
stops, and the flow-induced distortion relaxes back to

equilibrium. We then begin to measure the displacement
of the particle as a function of time. The position of the
particle is determined by means of the numerical analysis
of photographs that we take every 1.6 seconds under a
polarizing microscope [Fig. 1(c)–1(e)]. Typical tracks of
particles that are attracted by a �1=2 disclination line
located at the origin are shown in Fig. 2. Though somewhat
blurred by Brownian fluctuations, they are fairly consistent
with the tracks calculated in the one-elastic and one-
viscosity constant approximations (above formula). Their
shape significantly differs from the " � �1=2 case, so that
their observation yields a good way to determine the sign
of the disclination line. We use it instead of simply looking
at the line in polarized light, which does not give a clear
answer because the waveguide effect makes the light po-
larization that crosses the sample essentially controlled by
the anchoring conditions onto the plates, and therefore to
be roughly the same in both cases.

For each track, we first perform local fittings of low-
power polynomial functions in order to find the average
trajectory of the particle and its Brownian fluctuations
relative to this average motion. We analyze the Brownian
motion separately along the X and Y-axes. For 20 s to 30 s,
the mean square distance, covered by the particle in its
average moving frame, h�X2���i or h�Y2���i (inset of
Fig. 2), increases proportionally to the time �. Such a
behavior is typical of Brownian motion. It yields the cor-
responding diffusivity constant, kBT=3��iR, with i � X
or Y, kB being the Boltzmann constant and T the tempera-
ture. At larger time scales, the attraction potential of the
disclination line dominates and biases the random walk of
the particle, so that h�X2���i and h�Y2���i saturate and
finally decrease back to 0. From the diffusivity constants,
and the viscosities�X and�Y [13], we determine the radius
R for each particle used.

From the average trajectory, we first calculate the aver-
age velocity of the particle as a function of its distance r to
the line. We may then compare these data to the law of
motion given by the above model. In a steady regime, the
radial components of Fdrag and Fdis are equal. They may
both be written in the shape of � cos3�

2 where

 � � 6�R
�
�XvX � �YvY tan

3�
2

�
� AK

�
R
r

�
2
: (4)

In Fig. 3 are shown a log-log plot of � as a function of r and
the least-square fit of a power law. We do not take the data
into account in the fit when the bead is too close to the line
because the model does not apply at short distances and
because the position of the disclination line, due to defor-
mations [Fig. 1(c)–1(e)], is not defined to better than a few
�m. To avoid screening effects of the nematic force from
the plates, we similarly do not include in the fit data farther
than about 25 �m, �1=3 of the distance of the particle to
the plates. The fits performed on the tracks of Fig. 2 are
consistent with A � 10� 1:5 and n � 1:9� 0:2. This ex-

∆

τ 

FIG. 2 (color online). Tracks of different particles attracted by
a �1=2 disclination line. The continuous thin lines indicate the
trajectories calculated for r0 � 200, 60, 45, 19 �m, respectively.
Inset: Mean square distance, h�Y2���i, after a time � along the
Y-axis in the average moving frame of the particle (track with
same color (blue) open dots in Fig. 2). At short time scales, the
motion is diffusive. We deduce the corresponding bead radius
R � 0:55 �m.
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ponent is close to the value n � 2 calculated for electric
dipoles attracted by a uniformly charged line, and thus
extends the electrostatic analogy established for the inter-
actions between like-particles. Moreover, the coefficient A
being the same for all our beads, this analysis confirms the
validity of Eqs. (2) and (3), i.e., that the �1=2 disclination
line interacts with the particle-hedgehog system through
the splay field that it produces all around. Thanks to the
large range of our interaction—a property related to its low
exponent, n � 2, compared to n � 4 for the interactions
between dipolar particles and n � 6 for the quadrupolar
ones [3–6]—we are able to test the power law behavior
over almost one decade. Interestingly also, we observe that
the electrostatic analogy is not complete. As the trajecto-
ries of the beads show, the attraction forces around a
disclination line are not radial. This difference from elec-
trostatics is essentially due to the cos��1� "� term in
Eq. (2) which expresses that the splay field around a
disclination line exhibits a lower symmetry than the elec-
tric field around a uniformly charged line.

So, on the basis of linear hydrodynamics, we have
analyzed the Stokes drag that the nematic viscosities exert

onto the particles and shown that the particle-hedgehog
system interacts with the splay field of a�1=2 disclination
line in a way similar to the interaction of an electrostatic
dipole with the electric field produced by a line of mono-
poles. However, the electrostatic analogy is incomplete
since the disclination line does not exhibit the revolution
symmetry of a charged line. Finally, the bead gets stuck
onto the disclination line, a behavior that somehow gen-
eralizes the well-known condensation of impurities onto
the defects in crystals. Then, if other beads are available
around, the self-assembling process may go on until form-
ing a necklace where the original disclination works as a
template (Inset of Fig. 3).
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FIG. 3 (color online). Log-log plot of � as a function of the
distance r of the particle to the line. The fit of a power law,
performed over almost one decade, yields an exponent n � 1:92
consistent with the electrostatic model. Inset: The disclination
line is able to attract a large number of particles and finally to
form a necklace. The particles in the necklace are in solid contact
to one another, as its broken shape demonstrates. For a good
focusing, the line here is a loop located in the horizontal plane.
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