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We study the origin of the cooperative nature of spin crossover (SC) between low-spin and high-spin
(HS) states from the viewpoint of elastic interactions among molecules. As the size of each molecule
changes depending on its spin state, the elastic interaction among the lattice distortions provides the
cooperative interaction of the spin states. We develop a simple model of SC with intra and intermolecular
potentials which accounts for the elastic interaction including the effect of the inhomogeneity of the spin
states and apply constant temperature molecular dynamics based on the Nosé-Hoover formalism. We
demonstrate that, with increase of the strength of the intermolecular interactions, the temperature
dependence of the HS component changes from a gradual crossover to a first-order transition.
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The discovery of LIESST (light-induced excited spin
state trapping) [1,2] phenomena has accelerated studies of
functional spin-crossover (SC) molecular solids. SC com-
pounds have been studied intensively not only because of
their potential applicability to novel optical devices, e.g.,
optical data storage and optical sensors, etc., but also
because of the fundamental scientific interest in the mecha-
nism of the phase transition and the accompanied nonlinear
relaxation processes [1–7].

To control electronic and magnetic states of SC com-
pounds, it is important to understand the bistable nature of
these compounds. The SC transition between the low-spin
(LS) and high-spin (HS) states can be induced by change of
temperature, pressure, magnetic field, light-irradiation, etc.
It has been clarified that the interaction between spin states
causes various types of cooperative phenomena between
the LS and HS phases [8].

In order to take into account the cooperativity in the SC
transition, Wajnflasz and Pick (WP) proposed an Ising
model [9], in which the spin state is described by a ficti-
tious spin [� � �1 (1) for the LS (HS) state] and the short-
range interactions J between the spin states are introduced
in the form H � �J

P
hi;ji�i�j �

P
i���

1
2 kBT lng��i,

where � and g denote the energy difference and the
degeneracy ratio between the HS and LS states, respec-
tively. Using this model, the change between a gradual
crossover and a first-order transition has been well ex-
plained as a function of the parameters J, �, and g. So
far, the WP model and its extensions called ‘‘Ising-like
models’’ have been widely used for the description of the
SC transition and related relaxation phenomena including
photoinduced effects. Although the Ising-like models have
captured several important features [10–14], the origin of

the parameters remains unclear due to the drastic simplifi-
cations involved.

The importance of the elastic interaction in the SC
transition has been investigated [15–22] and the elastic
energy of the system with the density distribution of the LS
and HS sites has been phenomenologically analyzed [19].
The dependences of elastic constants on the spin state have
been also investigated in a one-dimensional (1D) two-level
model [21] and in a 1D vibronic coupling model [22].
However, local degrees of freedom (change of lattice)
can be traced out in one dimension. Thus, no phase tran-
sition occurs in one dimension.

Through the electron-distortion interaction, that is the
vibronic coupling, the size of the molecule changes with
the spin state. The distance (relative coordinate) between
the central transition metal and the surrounding ligands
changes. This distortion causes interactions among the spin
states of molecules as depicted in Figs. 1(a)–1(c). In the
present study, we focus on the lattice distortions in higher
dimensions caused by the difference of the molecular sizes
due to the different spin states. These local distortions
interact with one another elastically which causes a long
range effective interaction between the spin states.

We perform molecular dynamics (MD) simulations on a
2D system with a simple square lattice. The intramolecular
potential energy depending on the molecular size is given
by a double-well adiabatic potential V intra

i �ri�, which is a
function of the radius ri of the ith molecule. Let pi be the
corresponding relative momentum and letm be the reduced
mass.

We set an intermolecular binding interaction be-
tween SC molecules (the ith and jth molecules) as
Vinter
ij �Xi;Xj; ri; rj�, where Xi � �Xi; Yi� is the coordinate
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of the center of the ith molecule [Fig. 2(a)]. The corre-
sponding momentum is Pi � �PXi; PYi� and the mass of the
molecule is M.

To model this scenario, we apply the following
Hamiltonian:

 Hsystem �
X
i

P2
i

2M
�
X
i

p2
i

2m
�
X
i

Vintra
i �ri�

�
X
hi;ji

V inter
ij �Xi;Xj; ri; rj�: (1)

For simplicity, we here consider only one symmetric
vibration mode (isotropic volume expansion of molecules)
as an active dominant mode [23].

In order to clarify the effect of distortion, we adopt
intermolecular binding potentials independent of the mo-
lecular states, although it is expected that the intermolec-
ular binding is looser for HS molecules than for LS
molecules.

As the intramolecular potential, we adopt a double-well
parabolic function V�x�, where x is defined as the differ-
ence of the radius from that of the ideal LS state. V�x� has
minima at x � 0 (ideal LS) and x � 1 (ideal HS). Setting
rLS � 9 and rHS � 10 for the ideal radius of the LS mole-
cule and that of the HS molecule, respectively, the radius of
the molecule is r � rLS � x.

When a parabolic potential for the LS state (y � ax2)
and that for the HS state [y � b�x� c�2 � d] are mixed by
off-diagonal element J, the lowest potential function with
coefficient A is given by

 V�x� �
A
2

�
d� b�c� x�2 � ax2

�
��������������������������������������������������������������
4J2 � �d� b�c� x�2 � ax2�2

q �
: (2)

Because the entropy of N harmonic oscillators (H �P
i�
p2
i

2m�
1
2Kx

2
i �) is S � NkB�1� ln @

kBT

���
K
m

q
�, the entropy

difference between the LS and HS states is given by

 �S � SHS � SLS � NkB ln

���������
KLS

KHS

s
: (3)

Thus the ratio of the degeneracy between the HS and LS

states is g �
������
KLS

KHS

q
�

��a
b

p
, which corresponds to g in the WP

model. We take A � 10, a � 10, b � 0:1, c � 1:0, d �
0:1, J � 0:04, which gives g � 10. In realistic materials
there are several sources of the difference of the entropy.
However, in order to focus on only the lattice effect, we
adopt a large value of

������
KLS

KHS

q
�� 10�. In Fig. 2(b), the intra-

molecular potential V�x� is depicted. The energy difference
between the LS stable point and the HS stable point is
�ELS�HS � 1:075 and the energy difference between the
LS stable point and the unstable point (xc � 0:19) is
�Eact: � 1:654. The temperature dependence of the statis-
tical average of x, i.e.,

 hxi �
Tr x exp���H system�

Tr exp���H system�
(4)

for Vinter
ij � 0, calculated by a numerical integration, is

given in Fig. 2(c).
Next, we consider the intermolecular potential:

Vinter
ij �Xi;Xj; ri; rj� between the nearest neighbors (ith

and jth molecules). We take

 V inter
ij �Xi;Xj; ri; rj� � f�dij�; (5)

ir jr
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FIG. 2. (a) A schematic picture of the model. (X, Y) is the
coordinate of the center of each molecule and r is its radius.
(b) Intramolecular potential, where x is the growth of r from rLS.
(c) Temperature dependence of hxi without intermolecular inter-
actions.

LS molecule HS molecule
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FIG. 1 (color). (a) A schematic picture of the LS molecule and
the HS molecule. The HS molecule is bigger than the LS
molecule. (b) [(c)] shows a schematic picture of the lattice
distortion for a HS (LS) molecule and surrounding LS (HS)
molecules.
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where dij � jXi � Xjj � �ri � rj�. We treat phenomena in
which the lattice distortion is not so large and it does not
break the lattice structure. In this case, the qualitative fea-
tures of the phenomena do not depend on the details of the
potential form, and thus we adopt one of the simplest forms

 f�u� � D�ea
0�u�u0� � e�b

0�u�u0��; (6)

where a0 � 0:5 and b0 � 1:0. u0 is a constant such that
f�u� has the minimum at u � 0. When molecules [circles
in Fig. 2(a)] i and j contact each other (dij � 0), the
function has a minimum value.

In order to maintain the crystal structure (the coordina-
tion number), we introduce a potential between the next-
nearest neighbors [i and k, see Fig. 2(a)]

 V inter
ik �Xi;Xk; ri; rk� � f�dik � �r� (7)

with a0 � 0:1 and b0 � 0:2, which is much smaller than
that of the nearest neighbors. Next-nearest neighbors do
not contact each other as depicted in Fig. 2(a), and there is
a spatial gap between them. For simplicity, we assume here
that next-nearest neighbors are most stabilized when the
gap is �r � 2�

���
2
p
� 1��r, where we take �r � �rLS � rHS�=2

although �r can be temperature dependent. We focus on
the dependence of the spin state on the strength of the
intermolecular interaction, and thus we study the depen-
dence on D. Common D is used for both Eqs. (5) and (7).

To study the temperature dependence, we adopt the
Nosé-Hoover method [24,25] to generate the canonical
ensemble for a given temperature T. The Hamiltonian of
the thermal reservoir is given by

 Htherm �
P2
s

2Q
� 3NkBT lns; (8)

where s is a scaling factor, Ps is the conjugated momentum
of s, and Q is an effective mass associated with s.
Therefore, the total Hamiltonian including the effect of
thermal reservoir is given by H total �H system �H therm.

Applying the Nosé-Hoover formalism to the present
system, the time evolution of the system is realized accord-
ing to the following equations of motion.

 

dri
dt
�
pi
m
; (9)

 

dpi
dt
� �

@V intra

@ri
�
@V inter

@ri
� �pi; (10)

 

dXi
dt
�
Pi
M
; (11)

 

dPi
dt
� �

@V inter

@Xi
� �Pi; (12)

 

ds
dt
� s�; (13)

 

d�
dt
�

1

Q

�X
i

p2
i

m
�
X
i

P2
i

M
� 3NkBT

�
; (14)

where Vinter stands for the summation of the intermolecular
potentials for the nearest and next-nearest pairs, and ��Ps

Q .
We adopt x as a parameter to characterize the spin state.

We study the open-boundary system of L2 � 26	 26
molecules. We warm up the system from T � 0:1 to 2.0
in steps of increment 0.1 and cool it down to T � 0:1. At
each temperature, 40 000 MD steps are discarded as tran-
sient time and subsequent 20 000 MD steps are used to
measure x with the time step �t � 0:01. We employ an
operator decomposition method in which the numerical
error is of the order O��t3�. We set m � 1:0, M � 1:0,
and Q � 1:0. (hxi does not depend on m, M, and Q in the
equilibrium state.)

In Figs. 3(a)–3(d), the temperature dependences of hxi
are shown. When D � 10 [Fig. 3(a)], hxi in the warming
process and that in the cooling process overlap, indicating
that a smooth (gradual) SC crossover is realized. When the
interaction parameter becomes larger: D � 20 [Fig. 3(b)],
variation of hxi becomes sharper, which implies that the SC
transition becomes more cooperative.

WhenD � 28 [Fig. 3(c)], a clear hysteresis loop of hxi is
found. As the interaction parameter increases further: D �
42 [Fig. 3(d)], the hysteresis width becomes larger. Here,
we found that when the interaction between molecules
becomes large, the SC transition changes from a gradual
crossover to a first-order transition. The critical value of D
is Dcritical ’ 20.

In Figs. 4(a) and 4(b), snapshots of the complete LS state
and the complete HS state are shown, in which the system
length changes by 11%. In Figs. 4(c) and 4(d), a snapshot
of configuration at T � 0:6 for the parameter D � 10 and
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FIG. 3 (color). Temperature dependences of hxi for the values
of (a) D � 10, (b) D � 20, (c) D � 28, and (d) D � 42. The
open red circles (blue squares) denote hxi in the warming
(cooling) process.
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that at T � 1:0 for D � 42 are given, where the concen-
tration of HS molecules is about 30% in both configura-
tions. Although the number of HS molecules is almost the
same, the average cluster size of HS in Fig. 4(d) is bigger
than in Fig. 4(c). This indicates that there is higher corre-
lation between spin states of molecules in the case of
strong intermolecular interaction [case (d)], which pro-
motes first-order transition.

In this study, we investigated the cooperativity of spin-
crossover phenomena induced by the elastic interaction
among lattice distortions which are triggered by the differ-
ence of molecular sizes caused by the different spin states.
This effect is inherent to the high dimensionality (2D and
3D). The present 2D model can be applied straightfor-
wardly to the 3D case. Although the lattice relaxation
through a change of molecular sizes has been studied phe-
nomenologically by a mean-field treatment [19], as far as
we know, this is the first attempt to investigate the coop-
erativity attributed to the effect of local distortions (fluc-
tuation) and that of the propagation to the overall lattice.
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FIG. 4 (color). Snapshots of configurations. HS molecules (red
circles) are allocated when r is larger than r � rLS � xc. LS
molecules are drawn by blue circles. (a) Complete LS phase.
(b) Complete HS phase. (c) A snapshot of configuration at T �
0:6 in the system of D � 10 (L2 � 162), where 80 molecules are
in the HS state. (d) A snapshot of configuration at T � 1:0 in the
system of D � 42 (L2 � 162), where 79 molecules are in the HS
state.
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