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We study theoretically the destruction of spin nematic order due to quantum fluctuations in quasi-one-
dimensional spin-1 magnets. If the nematic ordering is disordered by condensing disclinations, then
quantum Berry phase effects induce dimerization in the resulting paramagnet. We develop a theory for a
Landau-forbidden second order transition between the spin nematic and dimerized states found in recent
numerical calculations. Numerical tests of the theory are suggested.
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In this Letter, we study various theoretical phenomena in
spin S � 1 quantum magnets with SU�2� invariant nearest
neighbor interactions. Specifically, we focus on spin ne-
matic order in such quantum magnets and its destruction by
quantum fluctuations.

A general Hamiltonian describing such spin S � 1
quantum magnets takes the form

 H �
X
hiji

Jij ~Si � ~Sj � Kij� ~Si � ~Sj�
2: (1)

In real materials, the ratio K=J is probably small; however,
it has been proposed that arbitrary values of K=J can be
engineered in ultracold atomic Bose gases with spin in
optical lattices [1]. We will focus exclusively on a rectan-
gular lattice where the couplings J, K on vertical bonds are
a factor of � smaller than those on the horizontal bonds.
This model was studied numerically recently (for K > 0)
in an interesting paper by Harada et al. [2]. In the isotropic
limit � � 1, they found that there is a first order phase
transition from a collinear Néel state to a spin nematic state
(along the line J � 0) with order parameter

 Q�� �

�S�S� � S�S�
2

�
2

3
���

�
� 0 (2)

even though there is no ordered moment h ~Si � 0. This spin
nematic state corresponds to the development of a sponta-
neous hard axis anisotropy in the ground state. When � is
decreased from 1 to make the lattice rectangular, quantum
fluctuations are enhanced. The Néel and spin nematic
phases then undergo quantum phase transitions to quantum
paramagnets. Interestingly, it is found that the spin nematic
phase gives way to a dimerized quantum paramagnet
where neighboring spin-1 moments form strong singlets
along every other bond in the horizontal direction. Further,
the quantum phase transition itself appears to be second
order in violation of naive expectations based on Landau
theory but similar to the situations studied in Ref. [3,4] for
other phase transitions in quantum magnets.

In this Letter, we provide an understanding of these
phenomena. First, we provide general arguments relating
the spontaneous dimerization with one route to killing spin
nematic order by quantum fluctuations. When applied to
one dimension, our arguments explain the absence in nu-
merical calculations [5] of the featureless quantum disor-
dered spin nematic proposed by Chubukov [6] for spin-1
chains. Further, we show that a putative direct second order
quantum phase transition between the spin nematic and
dimerized phases is described by a continuum field theory
with the action
 

S �
Z
d3xj�@� � iA�� ~Dj2 � rj ~Dj2 � u�j ~Dj2�2

� v� ~D�2� ~D��2 �
1

e2 �����@�A��
2: (3)

Here, ~D is a complex three component vector, and A� is a
noncompact U�1� gauge field. The nematic phase occurs
when ~D condenses while ~D is gapped in the dimerized
paramagnet. This theory is an anisotropic version of the
noncompact CP2 model (NCCP2). The two component
version—the anisotropic NCCP1 model—describes
Néel-VBS transitions of easy plane spin-1=2 magnets on
the square lattice [3]. A second order nematic-dimer tran-
sition on the rectangular lattice is possible if (a) this field
theory has a second order transition associated with order-
ing of ~D and (b) doubled instantons in the gauge field A�
are irrelevant at the corresponding critical fixed point.
These instantons are relevant at the paramagnetic fixed
point of Eq. (3). This leads to confinement of the ~D fields
and to dimer order. Indeed, the dimer order parameter is
simply the single instanton operator [7]. A direct second
order nematic-dimer transition is thus accompanied by the
dangerous irrelevance of doubled instantons and the asso-
ciated two diverging length or time scales.

We will provide two different arguments to justify our
results. First, we address the quantum disordering of the
nematic based on general effective field theory consider-
ations that focus on the properties of topological defects of
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the nematic order parameter. Second, we provide a more
microscopic argument based on an exact slave ‘‘triplon’’
representation [8] of the S � 1 operators.

The order parameter manifold for the spin nematic state
may be taken to be the possible orientations of the sponta-
neous hard axis d̂ (the ‘‘director’’) and thus is S2=Z2. The
Z2 simply reflects the fact that d̂ and�d̂ are the same state.
The spin nematic state allows for Z2 point vortex defects
(‘‘disclinations’’) in two space dimensions. The director d̂
winds by � on encircling such a disclination. As discussed
by Lammert et al. [9], for classical nematics, the fate of the
disclinations crucially determines the nature of the ‘‘iso-
tropic’’ phase obtained when the nematic is disordered by
fluctuations. If the transition out of the nematic occurs
without condensing the disclinations, then a novel topo-
logically ordered phase—interpreted in the present context
as a quantum spin liquid—obtains. However, the nematic
may also be disordered in a more conventional way by
condensing the disclinations. In the present context, we
argue that nontrivial quantum Berry phases associated with
the disclinations lead to broken translational symmetry in
this quantum paramagnet. Furthermore, this transition may
be second order as described below (unlike the classical
nematic-isotropic transition).

Following Lammert et al. [9], we consider the quantum
phase transition out of the nematic using an effective
model in terms of the director d̂. The d̂, �d̂ identification
requires that the d̂ vector is coupled to a Z2 gauge field.
Thus, we consider the following action on a three dimen-
sional spacetime lattice:

 S � �
X
hr;r��i

td�	��r�d̂r � d̂r�� � SB (4)

Here, r represent the sites of a cubic spacetime lattice,� �
�x; y; 
�, 	��r� � �1 is a Z2 gauge field on the link be-
tween r and r��. The term SB is the Berry phase to be
elaborated below.

The Berry phases arise from the nontrivial quantum
dynamics of the d̂ vector and can be understood very
simply by considering a single quantum spin S � 1 with
a time varying hard axis d̂�
� that represents the fluctuating
local director field:

 H � 	d̂�
� � ~S
2 (5)

For a time independent d̂, the ground state is simply the
state where the projection ~S � d̂ � 0. The Berry phase is
obtained by considering a slow time varying closed path of
d̂ in the adiabatic approximation. There are two kinds of
such closed paths that are topologically distinct. First, there
are paths for which d̂ returns to itself. For such paths, it is
easy to see that the Berry phase factor is 1. Then, there are
closed paths where d̂ returns to �d̂. In the adiabatic
approximation with S � 1, it is easy to see that the wave
function acquires a phase of � for such a path. Thus, there

is a Berry phase of �1 for closed paths where d̂ returns to
�d̂.

The phase factor of �1 for nontrivial closed time evo-
lutions of d̂ at a spatial site may be naturally incorporated
into the effective lattice model of Eq. (4) above. First, we
note that a closed loop in time where d̂ winds by �
corresponds to a configuration with Z2 gauge flux �1
through the loop. The Berry phase is thus simply

 e�SB �
Y
r

	
�r�: (6)

At each space point, the product over the timelike bonds
measures the flux of the Z2 gauge field through the closed
time loop at that point. Precisely, this Berry phase factor
arises in Z2 gauge theoretic formulations of a number of
different strong correlation problems [10], and the theory is
known as the odd Z2 gauge theory. Thus, an appropriate
effective model for disordering the S � 1 spin nematic
state is a theory of d̂ coupled to an odd Z2 gauge theory
[11].

The spin nematic ordered phase corresponds to a con-
densate of d̂. In this phase, the Z2 disclinations are simply
associated with Z2 flux configurations of the gauge field.
Thus, the Berry phase term associated with the gauge field
directly affects the dynamics of the disclinations. Dis-
ordered phases where d̂ has short-ranged correlations may
be discussed by integrating out the d̂ field. The result is
pure odd Z2 gauge theory on a spatial lattice with rectan-
gular symmetry. This theory is well understood. It is con-
veniently analyzed by a duality transformation to a stacked
fully frustrated Ising model [12] followed by a soft-spin
Landau-Ginzburg analysis [13]. This leads to a mapping to
an XY model with fourfold anisotropy:

 Sv � �tv
X
hRR0i

cos��R ��R0 � � �
X
R

cos�4�R�: (7)

Here, R, R0 are sites of the dual cubic lattice. The real and
imaginary parts of the field ei�R correspond to Fourier
components of the Z2 vortex near two different wave
vectors at which the quadratic part of the Landau-
Ginzburg action has minima. The anisotropy is fourfold
on the rectangular spatial lattice as opposed to the eightfold
anisotropy that obtains with square symmetry [13]. There
is a disordered phase where the Z2 vortex has short-ranged
correlations: this corresponds to the topologically ordered
quantum spin liquid in the original spin model. In addition
there are ordered phases associated with condensation of
the ei�R . These phases break translation symmetry. For the
rectangular lattice of interest, the natural symmetry break-
ing pattern is dimerization along the chain direction.

We thus see that Berry phases associated with the quan-
tum dynamics of the director d̂ lead to dimerization when
the nematic order is disordered by condensing the Z2

disclinations. This analysis can be easily repeated in one
spatial dimension. Then, the Z2 disclinations are point
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defects in spacetime. These are described by the odd Z2

gauge theory in 1� 1 dimensions which is always con-
fined and which has a dimerized ground state [14]. In
particular, this argument shows that for S � 1 chains, a
featureless disordered spin nematic state will not exist.

Returning to two dimensions, we may now write down a
field theory for the nematic-dimer transition. The Berry
phases on the disclinations are encapsulated in Eq. (7). We
now need to couple these back to the d̂ vector. The main
interaction between d̂ and ei�R is the long ranged statistical
one: on going around, a particle created by ei� the vector d̂
acquires a minus sign.

We proceed by first ignoring the � term in Eq. (7) and
using a Villain representation [15] to let

 Sv �
X
hRR0i

Uj2
RR0 (8)

where U � 1=�2tv� and jRR0 are integer valued currents of
the ei� that satisfy ~r � ~j � 0 and ��1�j �

Q
P	. Here, the

symbol
Q
P refers to a product over the four bonds of the

direct lattice pierced by hRR0i. This term ensures that an
ei� particle acts as � flux for the d̂ field. Substituting ~j �
~r� ~A (with A� integer), we get

 ��1�
~r� ~A �

Y
P

	: (9)

Now write A � 2a� s with a an integer and s � 0, 1 so
that

Q
P��1�s �

Q
P	 which can be solved by choosing

��1�s � 	. The integer constraint on A may be imple-
mented softly by including a term

 � t cos�2�a� � �t	rr0 cos��Arr0 �: (10)

We now separate out the longitudinal part of A by letting
~A! ~A� 1

�
~r. After a further rescaling A! A

� , we finally
get the action

 S � Sd � S � SA (11)

 S � �t
X
hrr0i

	rr0 cos�r � r0 � Arr0 � (12)

 SA � U
X
P

� ~r� ~A�2 (13)

with Sd given in Eq. (4). Summing over 	 and keeping the
lowest order cross term between td and t, we get

 S � �
X
hrr0i

t� cos�r � r0 � Arr0 �d̂r � d̂r0 �U
X
P

� ~r� ~A�2

(14)

with t� � td�t. It is instructive to introduce the complex
vector ~Dr � eir d̂r that satisfies j ~Dj2 � 1, ~D� ~D� � 0.
The second condition may be imposed softly by including
a term

 vj ~D� ~D�j2 � �v	� ~D�2� ~D��2 � 1
 (15)

with v > 0. Thus we arrive at the model

 S � SD � SA (16)

 SD � �t
X
hrr0i

eiArr0 ~D�r � ~Dr0 � c:c:� v� ~D�2� ~D��2 (17)

with j ~Dj2 � 1. Here the v term breaks the global SU�3�
symmetry associated with rotations of the ~D down to
SO�3�. Equation (3) is precisely a soft-spin continuum
version of the lattice action above.

We now consider the role of the fourfold anisotropy on
the disclination field ei� (the � term in Eq. (7)). Without
this term, the number conjugate to � is conserved. In the
dual description, this translates into conservation of the
magnetic flux of theU�1� gauge field ~A. Thus, at � � 0, the
gauge field is noncompact. The � term however destroys
this conservation law—indeed four disclinations can be
created or destroyed together. In the effective model of
Eq. (3), a disclination in ~D corresponds to a configuration
where the gauge flux is equal to�. Thus, the � term may be
interpreted as a doubled ‘‘instanton’’ operator that changes
the gauge flux by 4�.

The nematic order parameter is simply related to the ~D
fields:

 Q�� �

�D��D� � c:c:

2
�
���

3

�
(18)

Thus, when ~D condenses, nematic order develops. The
paramagnetic phase occurs when ~D is gapped. In the
absence of instantons, the low energy theory of this phase
has a free propagating massless photon. Instantons how-
ever gap out the photon and confine the ~D fields. The dimer
order parameter ei� is the single instanton operator and
gets pinned in this phase. A direct second order transition
between the nematic and dimerized states can thus occur if
doubled instantons are irrelevant at the critical fixed point
of the anisotropic NCCP2 action associated with the con-
densation of ~D.

A different more microscopic argument can also be used
to justify Eq. (3) and provides further insight. Consider the
following exact representation [8] of a spin-1 operator at a
site i in terms of a ‘‘slave‘‘ triplon operator ~wi:

 

~S i � �i ~w
y
i � ~wi (19)

together with the constraint ~wyi � ~wi � 1. The ~wi satisfy
usual boson commutation relations. The nematic order
parameter is readily seen to simply be

 Q�� �

����
3
�
wy�w� � c:c:

2

�
: (20)

As with other slave particles, this representation leads to a
U�1� gauge redundancy associated with letting ~wi!ei�i ~wi
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at each lattice site. It is convenient to first consider the
special point Jij � 0 where the Hamiltonian in Eq. (1) is
known to have extra SU�3� symmetry. Then, H may be
rewritten (up to an overall additive constant)

 H � �
X
hiji

Kij� ~w
y
i � ~w

y
j �� ~wi � ~wj�: (21)

This is invariant under a global multiplication of ~wi by an
SU�3� matrix U on one sublattice and by U� on the other.
Such magnets were studied in detail in Ref. [7], and we can
take over many of their results. A standard mean field
approximation with h ~wi � ~wji � 0 yields a paramagnetic
phase with gapped ~w particles in the d � 1 limit while in
two dimensions, the ~w condense thereby breaking the
SU�3� symmetry. The theory of fluctuations beyond
mean field includes a compact U�1� gauge field. In the
paramagnetic phase instanton fluctuations of this gauge
field confine the ~w particles and their Berry phases lead
to dimerization on the rectangular lattice. The results of
Ref. [7] now imply that the transition associated with ~w
condensation is described by an NCCP2 model with
doubled instantons; i.e., it is precisely of the form of
Eq. (3) but with v � 0. The triplon ~wi on the A sublattice
� ~D while on the other sublattice ~wi � ~D�. Thus, we see
that the Néel vector ~N is simply related to ~D through

 

~N ��i ~D� � ~D (22)

For the SU�3� symmetric Hamiltonian all eight compo-
nents of the tensor D��D� � jDj2���=3 have the same
correlators. The symmetric part of this tensor is the ne-
matic order parameter and the antisymmetric part is the
Néel vector.

If now a small J < 0 is turned on the SU�3� symmetry is
explicitly broken down to SO�3�. This sign of J disfavors
Néel ordering so that nematic ordering wins in the two
dimensional limit. The NCCP2 field theory of the transi-
tion to the dimer state must then be supplemented with an
anisotropy term vj ~Nj2 with v > 0 which due to Eq. (22) is
precisely the anisotropy term of Eq. (3).

What may we say about the NCCP2 field theory? While
this may be studied numerically here we restrict ourselves
to some simple observations. First if this theory has a
critical point where ~D orders, the dynamical critical ex-
ponent z � 1. Next, we note that the instanton scaling
dimension is expected to be bigger for NCCP2 as com-
pared to NCCP1. In the isotropic case, existing estimates
[4] give 0.63 for the single instanton scaling dimension. In
a naive RPA treatment of the gauge fluctuations, the in-
stanton scaling dimension scales like m2N where m is the
instanton charge and N is the number of boson compo-
nents. Thus, within this approximation, we estimate the
doubled instanton scaling dimension in NCCP2 as 3

2 �2�
2�

�0:63�  3:78. This admittedly crude estimate nevertheless

suggests that doubled instantons may be irrelevant for
NCCP2.

The possible irrelevance of the doubled instantons has
dramatic consequences for the phenomena at the nematic-
dimer transition. It implies that the critical fixed point has
enlarged U�1� symmetry associated with conservation of
the gauge flux exactly like in Ref. [3]. This enlarged
symmetry implies that the (�, 0) columnar dimer order
parameter may be rotated into the (0,�) columnar dimer or
into plaquette order parameters at (0, �), (�, 0). Thus right
at the critical point all these different VBS orders will have
the same power law correlations. It will be an interesting
check of the theory of this Letter to look for this in future
numerical calculations.

In summary we have studied the destruction of spin
nematic order by quantum fluctuations in quasi-one-
dimensional spin-1 magnets. We showed that Berry phases
associated with disclinations lead to dimerization if the
nematic is disordered by their condensation. We presented
a continuum field theory for a putative Landau-forbidden
second order transition between nematic and dimerized
phases. Future numerical work or cold atoms experiments
may be able to explore the physics described in this Letter.
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