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We present certain exact analytical results for dynamical spin correlation functions in the Kitaev Model.
It is the first result of its kind in nontrivial quantum spin models. The result is also novel: in spite of the
presence of gapless propagating Majorana fermion excitations, dynamical two spin correlation functions
are identically zero beyond nearest neighbor separation. This shows existence of a gapless but short range
spin liquid. An unusual, all energy scale fractionalization of a spin-flip quanta, into two infinitely massive
� fluxes and a dynamical Majorana fermion, is shown to occur. As the Kitaev Model exemplifies
topological quantum computation, our result presents new insights into qubit dynamics and generation of
topological excitations.
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In the field of quantum computers and quantum com-
munications, practical realizations of qubits that are robust
and escape decoherence is a foremost challenge [1]. In this
context, Kitaev proposed [2] certain emergent topological
excitations in strongly correlated quantum many body
systems as robust qubits. In a fault tolerant quantum com-
putation scheme [2–4], Kitaev constructed a nontrivial and
exactly solvable two-dimensional spin model [2] and illus-
trated the basic ideas. In some limit it also becomes the
celebrated ‘‘toric code’’ Hamiltonian. The Kitaev Model
has come closer to reality, after recent proposals for ex-
perimental realizations [5,6] and schemes for manipula-
tion and detection [7]. In initialization, error correction,
and readout operations, it is ‘‘spins’’ rather than emergent
topological degrees of freedom that are directly accessed
from outside. Thus an understanding of dynamic spin
correlations is of paramount importance.

We present certain exact analytical results for time
dependent spin correlation functions in arbitrary eigen-
states of the Kitaev Model. Our results are nontrivial and
novel, with possible implications for new quantum compu-
tational schemes. Further, our result is unique in the sense
that it is the first exact result for equilibrium dynamical
spin correlation functions in a nontrivial 2D quantum spin
model. Our result is valid for any lattice size with periodic
boundary conditions.

We show that the dynamical two spin correlation func-
tions are short ranged and vanish identically beyond near-
est neighbor sites for all time t, for all values of the
coupling constants Jx, Jy, and Jz, even in the domain of
J’s where the model is gapless. Our result shows rigorously
that it is a short range quantum spin liquid and long range
spin order is absent. We obtain a compact form for the time
dependence, which makes the physics transparent.

The Kitaev Model supports dynamical Majorana fer-
mion and static �-flux eigen excitations, having their
own sharp quantum numbers. In particular, any component
of local spin operator ��i creates (Fig. 3) one Z2 charge at
site i and one pair of bound Z2 fluxes in appropriate

plaquettes sharing site i. We show that this composite
undergoes quantum number fractionalization [8,9], in the
sense that the Z2 charge and flux get spatially separated.

In the present Letter we have restricted our calculation to
dynamical correlation functions for time independent
Hamiltonians, in arbitrary eigenstates and thermal states.
In actual quantum computations, key manipulations such
as braiding involve parametric change of the Hamiltonian
and adiabatic transport of topological degrees of freedom
[7]. In principle, some of the needed ‘‘nonequilibrium’’
dynamical correlation functions may be obtained by con-
volution of our results with suitable Berry phase factors.

In our work, we follow Kitaev [2] and use the Majorana
fermion representation of spin-half operators and an en-
larged Hilbert space. What is remarkable is that, because of
the presence of certain local conserved quantities in the
Kitaev Model, Hilbert space enlargement only produces
‘‘gauge copies’’, without altering the energy spectrum.
This luxury is absent for standard 2D Heisenberg models
when studied using an enlarged fermionic Hilbert space
[9,10].

The Kitaev Hamiltonian is

 H � �Jx
X
hijix

�xi �
x
j � Jy

X
hijiy

�yi �
y
j � Jz

X
hijiz

�zi�
z
j; (1)

where i, j label the sites of a hexagonal lattice, hijia, a � x,
y, z denotes the nearest neighbor bonds in the ath direction.
The model has no continuous global spin symmetry. All
bond interactions are Ising like, albeit in different quanti-
zation directions x, y, and z, in three different bond types,
making the model quantum mechanical. Further, it renders
a high degree of frustration; that is, even at a classical level
a given spin cannot satisfy conflicting demands, from 3
neighbors, of orientations in mutually orthogonal direc-
tions. The model has a rich local symmetry. A specific
product of 6 spin components in every elementary hexa-
gon, �y1�

z
2�

x
3�

y
4�

z
5�

x
6 (Fig. 1), commutes with the full

Hamiltonian. Thus there is one conserved Z2 charge �1
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at every dual lattice site of the hexagonal lattice. The model
is exactly solvable and becomes noninteracting Majorana
fermions, propagating in the background of static Z2 gauge
fields. Different possible Z2 charges separate the Hilbert
space into super selected sectors. The ground state corre-
sponds to all Z2 charges � �1. In this sector, for a range of
J’s, Majorana fermions are gapless, including the special
point Jx � Jy � Jz.

Following Kitaev, we represent the spins in terms of
Majorana fermions. At each site, we define 4 Majorana
fermions, c�, � � 0, x, y, z, with fc�; c�g � 2���. Four
Majorana (real) fermions make two complex fermions,
making the Hilbert space four dimensional. Notionally,
Hilbert space dimension of a Majorana fermion is

���
2
p

, an
irrational number, reminding us that Majorana fermions
have to occur in pairs (leading to a

���
2
p
�

���
2
p
�

2-dimensional Fock space) in physical problems.
The dimension of Hilbert space of N spins is 2N . The

enlarged Hilbert space has a dimension 4N � �
���
2
p
�

���
2
p
����

2
p
�

���
2
p
�N . State vectors of the physical Hilbert space

satisfy the condition

 Dij�iphys � j�iphys; Di � cic
x
i c
y
i c
z
i : (2)

Henceforth we will denote c0
i by ci. The spin operators can

then be represented by

 �ai � icic
a
i ; a � x; y; z: (3)

When projected into the physical Hilbert space, the opera-
tors defined above satisfy the algebra of spin 1=2 operators,
	�ai ; �

b
j 
 � i�abc�

c�ij. The Hamiltonian written in terms
of the Majorana fermions is

 H � �
X

a�x;y;z

Ja
X
hijia

iciûhijiacj; (4)

with ûhijia � icai c
a
j . Kitaev showed that 	H; ûhijia
 � 0 and

uhijia become constants of motion with eigenvalues uhijia �
�1. The variables uhijia are identified with static (Ising) Z2

gauge fields on the bonds. Kitaev Hamiltonian [Eq. (6)] has
a local Z2 gauge invariance in the extended Hilbert space.
For practical purposes, the local Z2 gauge transformation

amounts to uhijia ! �iuhijia�j, with �i � 1. Equation (2) is
the Gauss law and the physical subspace is the gauge
invariant sector.

In the gauge field sector we have gauge invariant Z2

vortex charges �1 (0 and � fluxes), defined as product of
uhijia around each elementary hexagonal plaqauette.

Equation (6), with conserved ûhijia , is the Hamiltonian of
free Majorana fermions in the background of frozen Z2

vortices or � fluxes. Since Z2 gauge fields have no dynam-
ics, all eigenstates can be written as products of a state in
the 2�1=2�N-dimensional Fock space of the ci Majorana
fermions and the �2��3=2�N-dimensional space of Z2 link
variables. We will refer to the former as matter sector and
the latter as gauge field sector. Gauge copies (eigenstates
with same energy eigenvalues) spanning corresponding
extended Hilbert space are obtained by local gauge trans-
formations uhijia ! �iuhijia�j.

Now to facilitate the exact computation of all spin
correlation functions we introduce a simple but key trans-
formation. We call this as ‘‘bond fermion’’ formation. In
the process we also discover a ‘‘quantum fractionaliza-
tion’’ phenomenon in the Kitaev Model that has an unusual
validity at all energy scales. Hereinafter, we follow the
convention that i in the bond hijia belongs to A and j to B
sublattice. We define complex fermions on each link as

 �hijia �
1
2�c

a
i � ic

a
j �: (5)

The link variables are related to the number operator of
these fermions, ûhijia � icai c

a
j � 2�y

hijia
�hijia � 1. All ei-

genstates can therefore be chosen to have a definite �
fermion occupation number. The Hamiltonian is then block
diagonal, each block corresponding to a distinct set of �
fermion occupation numbers. Thus all eigenstates in the
extended Hilbert space take the factorized form,

 j ~�i � jMG;Gi � jMGijGi (6)

and

 �y
hijia

�hijia jGi � nhijia jGi; (7)

where nhijia �
uhijia�1

2 and jMGi is a many body eigenstate
in the matter sector, corresponding to a given Z2 field of
jGi. In terms of bond fermions, spin operators become

 �ai � ici��hijia � �
y
hijia
�; �aj � cj��hijia � �

y
hijia
�:

(8)

Three components of a spin operator at a site get connected
to three different Majorana fermions defined on the three
different bonds. Written in the above form, the effect of �ai
on any eigenstate, which we refer to as a ’’spin flip’’,
becomes clear. In addition to adding a Majorana fermion
at site i, it changes the bond fermion number from 0 to 1
and vice versa (equivalently, uhijia !�uhijia), at the bond
hijia. The end result is that one � flux each is added to two
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FIG. 1 (color online). Elementary hexagon and ‘‘bond fer-
mion’’ construction. A spin is replaced with 4 Majorana fermi-
ons (c, cx, cy, cz). Bond fermion �h23i and spin operator are
defined. A and B denote the sublattice index.
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plaquettes that are shared by the bond hijia (Fig. 2). We
denote this symbolically as

 �ai � ici��hijia � �
y
hijia
� ! ici�̂1hijia�̂2hijia (9)

with �̂1hijia and �̂2hijia defined as operators that add �
fluxes to plaquettes 1 and 2 shared by a bond hijia
(Fig. 2). Further �̂2

1hijia � 1, since adding two � fluxes is
equivalent to adding (modulo 2�) zero flux.

Now we wish to calculate spin-spin correlation functions
in physical subspace. Since the spin operators are gauge
invariant, we can compute the correlation in any gauge
fixed sector and the answer will be the same as in the
physical gauge invariant subspace. (We have confirmed
this by a calculation in the projected physical subspace.)
So we consider the 2-spin dynamical correlation functions,
in an arbitrary eigenstate of the Kitaev Hamiltonian in
some fixed gauge field configuration G,

 Sabij �t� � hMGjhGj�
a
i �t��

b
j �0�jGijMGi: (10)

Here A�t� � eiHtAe�iHt is the Heisenberg representation of
an operator A, keeping @ � 1. As discussed above,

 �bj �0�jGijMGi � ci�0�jGiaijMGi (11)

 �ai �t�jGijMGi � ei�H�E�tcj�0�jGjbijMGi; (12)

where jGia�jb�i denote the states with extra � fluxes added
to G on the two plaquettes adjoining the bond hikia, hljib
and E is the energy eigenvalue of the eigenstate jGijMGi.
Since the Z2 fluxes on each plaquette are conserved quan-
tities, it is clear that the correlation function in Eq. (10)
which is the overlap of the two states in Eqs. (11) and (12)
is zero unless the spins are on neighboring sites. Namely,
we have proved that the dynamical spin-spin correlation
has the form

 

Sabij �t� � ghijia�t��a;b; ij nearest neighbors
� 0 otherwise.

(13)

Computation of gij�0� is straightforward in any eigenstate
jMGi. For the ground state where conserved Z2 charges

are unity at all plaquettes, the equal time 2-spin correlation
function for the bond hijiz is given by the analytic expres-
sion:

 h�zi�
z
ji � Szz

hijiz�0� �

���
3
p

16�2

Z
BZ

cos	�k1; k2�dk1dk2; (14)

where cos	�k1; k2� �
�k
Ek

, Ek �
���������������������
��2
k � �2

k�
q

, in the
Brillouin zone. �k � 2�Jx cosk1 � Jy cosk2 � Jz�, �k �

2�Jx sink1 � Jy sink2�, k1 � k � n1, k2 � k � n2, and

n1;2 �
��
3
p

2 ey � 1
2 ex are unit vectors along x and y type

bonds. At the point, Jx � Jy � Jz, we get Szz
hijia�0� �

0:52. The contour plot of h�zi�
z
ji in the parameter space

is shown in Fig. 2. h�xi�
x
ji and h�yi�

y
ji can be obtained from

Eq. (14) by the substitutions Jx ! Jz ! Jy ! Jx and Jx !
Jy ! Jz ! Jx, respectively.

To compute ghijia�t� we substitute for the �’s from
Eqs. (5) and (6). We choose a gauge where uhijia � �1

implying �y
hljib
jGi � �y

hikib
jGi � 0. We note that the above

conditions imposed at t � 0 will continue to be true at all
times since the bond fermion numbers are conserved. We
then have

 ghijia�t� � hMGjhGjici�t��
y
hijia
�t��hijia�0�cj�0�jGijMGi:

(15)

The time dependence evolution can be expressed in terms
of the Hamiltonian, and noting it is diagonal in the number
operators �y�, we get

 ghijia�t� � hMGjeiH	G
ia
tici�0�e�iH	G

ia
t��1�cj�0�jMGi;

(16)

where H	Gia
 is the tight binding Hamiltonian in the
background of the static gauge field configuration Gia.
The (� 1) factor is uhijia . This expression can be written
in terms of the time evolution under H	G
 as follows:
 

ghijia�t� � hMGjici�t�T�e
�2Ja

R
t

0
uhijia ci���cj���d��

� uhijiacj�0�jMGi: (17)

The above equation is written in an arbitrary gauge.
We have thus derived a simple but exact expression for

the spatial dependence of the two spin dynamical correla-
tion function. We have also obtained an exact expression
for the time dependence in terms of the correlation func-
tions of noninteracting Majorana fermions in the back-
ground of static Z2 gauge fields. Equation (17) represents
the propagation of a Majorana fermion in the presence of
two injected fluxes. It can be treated as an x-ray edge
problem and computed in terms of the Toeplitz determi-
nant. We will not do this now but proceed to discuss some
general features of our results.

The notion of fractionalization of spin-flip quanta is the
natural interpretation of our results [8,9]. Consider time

Jx , , JzJy 01= = = 0
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0.95

Jx ,Jy= =0 1 Jz= 0

Jx ,Jy 0= = Jz=0 1,

,

FIG. 2 (color online). Contour plot of nonzero h�zi�
z
ji in the

parameter space. The distances from any point in the outer
triangle to its three sides are in the ratio Jx:Jy:Jz. Numerical
number attached with the contour is the value of h�zi�

z
ji. The

middle triangle is the gapless phase.

PRL 98, 247201 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
15 JUNE 2007

247201-3



evolution of a single ‘‘spin flip’’ at site i given in Eq. (12).
Using the notation introduced in Eq. (9) we have

 �ai j�̂i � ici�t�T�e
2uhikiaJa

R
t

0
ci���ck���d���̂hikia1�̂hikia2j�̂i:

(18)

A spin flip at site i at time t � 0 is a sudden perturbation
to the matter (Majorana fermion) sector, as it adds two
static � fluxes to adjoining plaquettes. The time ordered
expression represents how a bond perturbation term,
i2uhikiaJacick, evolves the Majorana fermion state, in ‘‘in-
teraction representation.’’ At long time scale the resulting
‘‘shakeup‘‘ is simple and represents a rearrangement
(power law type for gapless case) of the Majorana fermion
vacuum to added static �-flux pairs. The Majorana fer-
mion, produced by a spin flip, ci�t� propagates freely as a
function of time.

As a spin flip at site i is a composite of a Majorana
fermion and a �-flux pair [Eq. (13)], two spin correlation
functions define the probability that we will detect the
added composite at site j after a time t. As the added
�-flux pairs do not move, the above probability is identi-
cally zero, unless sites i and j are nearest neighbors and
spin components are a � b. This is why the spatial depen-
dence of two spin correlation functions are sharply cut off
at nearest neighbor separation. The asymptotic response to
an added �-flux pair and free dynamics of the added
Majorana fermion control the long time power law behav-
ior of our only nonvanishing nearest neighbor two spin
correlation function.

Further, for a given pair of nearest neighbor sites, only
one Ising spin pair of a corresponding component is non-
zero. Other pairs and cross correlation functions vanish.
More specifically, for a given bond the only nonzero two
spin correlation function is the bond energy.

What is unusual is that the above result is true in all
eigenstates of the Kitaev Model, irrespective of energies. It
follows that it is fundamental in topological quantum
computation. In the presence of external magnetic field,
the gauge fields ûhiji and the Z2 flux operators do not
commute with the Hamiltonian. The � fluxes acquire their
own dynamics and have a bandlike motion. While the
correlation functions are no longer exactly calculable we
find that, at least for weak magnetic fields, the short range

character of spin-spin correlation and quantum number
fractionalization phenomenon survive.

Multispin correlation functions can be calculated in our
formalism. Further, quantum entanglement, a key notion in
quantum computation and quantum information, is ulti-
mately connected with some complicated multispin corre-
lation function. Preliminary calculations show that con-
currence is zero for any two sites.

To summarize, this Letter presents certain exact analyti-
cal results for the spin dynamics and a spin-flip fraction-
alization scheme for the Kitaev Model. As this nontrivial
spin model is also a model for topological quantum com-
putation, our exact results should provide insights into
qubit dynamics and possible ways of generating emergent
topological qubits. Our formalism, which uses the factor-
ized character of the eigenfunctions in the extended Hilbert
space, is easily adapted to the calculation of multispin
correlation functions, which is a key step in the calculation
and understanding of quantum entanglement properties.
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FIG. 3 (color online). Time evolution and fractionalization of a
spin flip at t � 0 (�zi jMG;Gi) at site i, into a �-flux pair and a
propagating Majorana fermion.
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