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In this Letter we study electron interference in nanotube loops. The conductance as a function of the
applied voltage is shown to oscillate due to interference between electron beams traversing the loop in two
opposite directions, with slightly different velocities. The period of these oscillations with respect to the
gate voltage, as well as the temperatures required for the effect to appear, are shown to be much larger than
those of the related Fabry-Perot interference. We calculate interaction effects on the period of the
oscillations, and show that even though interactions destroy much of the near degeneracy of velocities
in the symmetric spin channel, the slow interference effects survive.

DOI: 10.1103/PhysRevLett.98.246803 PACS numbers: 73.63.Fg, 73.23.�b

Single-walled carbon nanotubes are a prime example of
quantum strongly correlated phenomena in mesoscopic
physics [1]. Luttinger-liquid behavior [2,3], as well as
Fabry-Perot interference [4–6] were observed in these
systems. The latter should disclose the interaction parame-
ters of the Luttinger liquid. But since interference patterns
of spin and charge modes have similar energy scales, such
experimental observation is challenging. Indeed, the devel-
opment of electron interferometery is crucial for probing
interaction effects. Mach-Zehnder interferometers reveal
Aharonov-Bohm oscillations and magentic-field edge
channels, [7–11], and can probe exotic fractional quantum
Hall states [12–14]. Two-path interferometers allow prob-
ing correlated states of quantum dots [15,16]. Universal
conductance fluctuations (UCF) [17] and weak localization
effects [18,19], were measured in a controlled fashion
using interference in ballistic quantum dots [20].
Similarly, interference is successfully used to probe elec-
tronic interactions in nanowires [21,22].

In this Letter, we analyze a new electronic interference
mode in nanotubes—the Sagnac interference [23]. The
optical Sagnac effect measures the angular velocity of a
rotating ring, through interference between counterpropa-
gating light beams. In an armchair nanotube loop
[Fig. 1(a)], the same effect arises due to velocity detuning
between right- and left-moving electrons, occurring when
the electronic Fermi surface is tuned away from the Dirac
nodes. This effect also reflects the interference underlying
weak localization (the velocity detuning replaces the ap-
plied normal magnetic field); it similarly produces large-
period conductance fluctuations as a function of gate- and
source-drain voltages, and survives to very high tempera-
tures (unlike UCF which is sensitive to thermal dephasing).
Figure 1(b) shows, we believe, such a large-period fluctua-
tion, which appears already at T � 64 K. Following the
discussion of the theory of Sagnac interference in nano-
tubes, we will address this data, considering also Fabry-
Perot interference in this geometry.

The Sagnac interference in armchair nanotubes appears
when the Fermi surface is shifted from the band middle
using a gate voltage, Vg. Ignoring interactions, this detunes
the velocities of right and left-moving electrons in each
node: vR � vF � u, and vL � vF � u [Fig. 2(a)] [24].
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FIG. 1 (color online). (a) In a nanotube loop, electrons can
tunnel (dashed line) from one branch (X) to the other (X0)
[33,34]. Electrons impinging on point X either proceed through
the loop moving counterclockwise, or tunnel to X0, and proceed
clockwise. Velocity difference between right and left movers
produces Sagnac interference between the counterpropagating
beams. (b) Conductance vs gate voltage of a nanoloop device.
From top to bottom: T � 64, 48, 32, 24, 16, 12, 8, and 4 K.
Strong conductance fluctuations, consistent with Sagnac inter-
ference, appear already at T � 64 K with period �VG � 20 V.
At lower temperatures Fabry-Perot interference appears as well
with short periods �Vg � 0:15 V, 0.3 V. Left inset shows the
device; data from both loops are qualitatively the same. Right
inset shows the suspected Sagnac envelope at T � 4 K and
Vsd � 30 mV for wider range of Vg. Note that the asymmetry
in Vg is not understood.
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The small difference u, produces a slow fluctuation of the
conductance as a function of Vg [25] through a phase
difference between the counterpropagating beams:

 �� � LkL � LkR �
L�F
@vL
�
L�F
@vR

� �eVgL
2u

@v2
F

; (1)

where L is the length of the loop, and �F � @vR=LkR=L.
Also, �F � �eVg, where � is the conversion factor be-
tween the gate voltage and change in chemical potential; �
is estimated to be of the order of 10�2 in the system of
Fig. 1(b) [27]. Interference fringes repeat when �� �
2�n. Since roughly u / Vg, the nth fringe is at Vg /

���
n
p

;
fringes are more dense as we move away from the middle
of the nanotube’s band. For noninteracting electrons, the
same fringes should appear as a function of a source-drain
voltage, Vsd. In the armchair-tube nanoloop, beams moving
in the same direction around the loop, but in different
nodes, also interfere [Fig. 2(c)]. The two beams in this
band-Sagnac effect differ by the same phase due to the
time-reversal symmetry.

The above picture completely ignores interactions. But
the thin single-walled nanotubes we probed probably have
a Luttinger parameter g� 0:3, and are not a Fermi-liquid
[4]. Interactions change the hydrodynamic velocities in the
nanotube dramatically, and may lift the near velocity de-
generacy of interfering beams. Next, we analyze the
Sagnac interference (and the Fabry-Perot with u � 0) of
interacting electrons. We show that interactions do not
destroy the large-period Sagnac fringes. The fringes in
the conductance vs Vg are determined mostly by the
bare, noninteracting, velocity spectrum, essentially reflect-
ing Eq. (1). Nevertheless, the fringes in Vsd are modified
dramatically: they reflect the four velocities of the tube’s
hydrodynamic modes.

The bosonized Lagrangian of the two Dirac nodes, with
� parametrizing the density-density interaction, is
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The subscript a designates the Dirac node, � is the spin.
The charge mode, 1

2

P
�;a�1;2��

�
a �, has the interaction

Luttinger parameter g � �1� 8�=�@vF��1=2. The
Fermionic operators are:  �aR=L � e

i��1�a�2�=3a0�x�i���
a���a �.

The Fourier-transform of (2) defines an 8	 8 quadratic
form of the �’s and �’s. Its eight eigenvalues are square-
roots of second degree polynomials of ! and k. The
dispersion of the eight chiral modes is given by the values
of !=k which make an eigenvalue vanish. We find that the
spin antisymmetric channel consists of four untouched
neutral chiral modes, with velocities: v?1� � �vF � u,
v?2� � �vF � u, where � and � indicate right and left

movers, respectively. More interestingly, the remaining
four spin-symmetric chiral modes are given by (see also
Ref. [28]):
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(3)

vjj1 and vjj2 describe two right-left symmetric branches of
the spectrum. vjj1 is the charge mode velocity, when u � 0.
Next, we determine which velocities appear in the inter-
ference fringes of Vg and Vsd.
Vg couples to the total electronic density, whereas Vsd

couples to the density difference of right and left movers:

 L g�sd �
Z
dx
X
�;a

�
�eVg

1

�
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1

�
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a

�
: (4)

Vg changes the chemical potential and Fermi surface of the
electrons. This is seen by absorbing the new term in the �
and� gradient terms (where the latter is involved only due
to the difference in the original right and left moving
velocities). Unlike Vg, Vsd drives the system out of equi-
librium: it induces a current. This entails a time-dependent
transformation of the bosonic fields to absorb the term. The
transformation
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(5)
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FIG. 2 (color online). (a) Dispersion of an armchair nanotube.
When the Fermi surface is away from the nodes, right and left
movers in each node have different velocities, vR=L � vF � u
(a0 is the lattice constant), which leads to two Sagnac interfer-
ence effects: (b) Within one node (say node 1), a beam entering
the loop from the left (short black arrow) splits by partially
tunneling between points X and X0 to two counterpropagating
beams (black and gray), in region b. They then recombine at
point X0. Long black arrows represent the two chiral electronic
modes near node 1. The regions a, b, and c correspond to those
indicated in Fig. 1. (c) A beam impinging on point X in node 1
(2) partially scatters to node 2 (1). Both traverse the loop in the
same direction (short black and gray arrows), and recombine at
point X0. This effect is similar to the slow conductance oscil-
lation due to impurities propounded in Ref. [35], and in the
presence of axial magnetic field in Ref. [36].
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absorbs both Vg and Vsd in the bosonic fields, with � �" ,
# , and a � 1, 2 is the node. The slow, u-dependent fluctu-
ations can already be noticed in ��

a ’s x dependence. The
above procedure is drawn from Ref. [5].

Following are the possible scattering processes contrib-
uting to transport through the nanoloop. For simplicity, we
define ~ �aR=L � e

i��1�a�2�=3a0�x�i� ~��
a�~��a �. The simplest term

is the same-node backscattering (in the following we omit
the Hermitian conjugates):

 B̂�x; t� � b
X
�;a

� ~ �ya �x� ~ 
�
a �x�e2ikgx�2i!sdt�; (6)

 with kg�
�eg2VG

@vF�1�g
2u2=v2

F�
; !sd�eVsd=@vF: (7)

Second is cross-node backscattering: N̂b�x; t� �

 nb
X
�;a

� ~ �ya �x� ~ 
�
a �x�e

2ikg�1���1�a�u=vF��x�2i!sdt�; (8)

which is a backscattering from node a, to node, �a � 3� a.
Third is cross-node forwardscattering: N̂f�x; t� �

 

nf
P
�;a
� ~ �ya �x� ~ 

�
a �x� � ~ �ya �x� ~ 

�
a �x��e

2i��1�a�kgu=vF�x: (9)

Most important is the backscattering term arising from
tunneling between point X at x � 0, and X0 at x � L
[Fig. 2(a)], i.e., cross-loop backscattering:
 

K̂b�t� � kb
X
�;a;b

� ~ �ya �0� ~ 
�
b �L�e

ikg�1���1�b�u=vF��L�2i!sdt

� ~ �ya �0� ~ 
�
b �L�e

�ikg�1���1�b�u=vF��L�2i!sdt�: (10)

To calculate the conductance fluctuations, we must fol-
low the Kubo-Keldysh formalism as it applies to the vari-
ous scattering events, L̂m�x; t�, where L̂m � B̂, N̂f=b, K̂b.
We defer an exact evaluation to a later publication, and
concentrate here on the main features of the fluctuations:

 �Gmn �
Z 1

0
dth
L̂m�t�; L̂n�0��i � hL̂mL̂ni!�2eVsd=@: (11)

The second relation, connecting the integral to the corre-
lation’s Fourier transform, is due to the time dependence of
the integrand being e2i!sdt � e2ieVsdt=@. In the case of L̂m
occurring at x � 0 and L̂m at x � L, the dependence of the
oscillating part of �Gmn on Vsd is easily seen to be of the
form

 �Gmn � f�e2i!sdL=v
jj
1 ; e2i!sdL=v

jj
2 ; e2i!sdL=v?1� ; e2i!sdL=v?2��;

(12)

where vjj=?1=2 are the four velocities of the hydrodynamic
modes described in and above Eqs. (3). Thus the conduc-
tance vs Vsd fringes are determined by the velocities of the
interaction-induced four hydrodynamic modes.

Focusing on conductance G vs Vg, we see that only
exp�2ikgL� and exp�2ikgL

u
vF
� produce interference effects

in Vg [kg defined in Eq. (7)]. Table I lists the conductance
fluctuations due to second-order scattering. Our focus,
loop-Sagnac interference of counterpropagating beams, is
given in the first line in Table I). Indeed, it coincides with
the band-Sagnac interference (B-SAG); it is possible, how-
ever, to distinguish the two Sagnac modes by applying a
magnetic flux to the loop. The band-Sagnac fringes will be
unaffected, whereas the loop-Sagnac amplitude would be
suppressed to first order by cos�2e�=@�, with � the flux
through the loop.

The temperature sensitivity of the Sagnac and Fabry-
Perot interference differ remarkably. Let us estimate and
compare the two. An electron has energy uncertainty �T,
tantamount to an uncertainty in Vg: �Vg � Tc=�g2e.
Comparing �Vg � �Vg, where the interference disap-
pears, yields Tc (Table I). Note that the g2 factor is abscent
in the Tc expressions; since temperature only smears the
kinetic energy of electrons, the effects of interactions
should be omitted to first approximation from Tc. We
find that Tc for the Sagnac modes is vF=u larger than
that of the Fabry-Perot interference.

 TSAG
c �

�@vF
L

�
1�

u2g2

vF

�
vF
u
�
vF
u
TFP
c : (13)

Hence the limiting factor for the observation of the Sagnac
effect is most likely phonon scattering.

The measurement motivating this work is shown in
Fig. 1. At T � 32 K fast oscillations with period �Vg �
0:3 V appear; we identify them as the loop-FP mode of
Table I (Coulomb blockade depends on total wire length,
and is expected at a much lower �Vg � 10�3–10�2 V).
Another fast mode appears at T � 12 K, with a doubled
frequency, �Vg � 0:15 V, fitting the regular FP mode. In
addition, a slowly oscillating envelope is already evident at
T � 64 K, with the first period being roughly �Vg � 20 V
[29]. If we identify this with the Sagnac effects, then

TABLE I. Interfering contributions to the conductance as a
function of Vg. The first row indicates the type of interference.
The loop-Sagnac (L-SAG) and band-Sagnac (B-SAG) corre-
spond to Figs. 2(b) and 2(c) respectively. The three Fabry-
Perot modes originate from electronic path difference: of two-
loops in node 1 or 2 (B-FP�), of one loop in node 1 and one in 2
(FP), or, due to loop-tunneling, one loop in node 1 or 2 (L-FP�).
The coherence temperature of each interference mode is deter-
mined heuristically by assuming that Tc � �g2e�Vg=kB.

Type L̂mL̂n �Vg Tc

L-SAG K̂bK̂b
�@vF
�eg2L �1�

u2g2

v2
F
� vFu

�@vF
L �1�

u2g2

v2
F
� vFu

B-SAG N̂f�N̂bB̂�
�@vF
�eg2L �1�

u2g2

v2
F
� vFu

�@vF
L �1�

u2g2

v2
F
� vFu

FP B̂ B̂ �@vF
�eg2L

�1� u2g2

v2
F
� �@vF

L �1�
u2g2

v2
F
�

B-FP� N̂bN̂b
�@v2

F

�eg2L
1�u2g2=v2

F
vF�u

�@v2
F

L
1�u2g2=v2

F
vF�u

L-FP� K̂bB̂, K̂bN̂b
2�@v2

F

�eg2L
1�u2g2=v2

F
vF�u

2�@v2
F

L
1�u2g2=v2
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vF�u
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�VSAG
g =�VFP

g � 130. To check feasibility, we approximate
the armchair nanotube’s dispersion as parabolic, ��k �
�	�1� �2�3a0

�2k2�; and u
vF
� �

2	 [30]. The first fringe due to
the Sagnac interference appears when the accumulated
phase difference between the two interfering beams is �:

 �� �
Z 
SAG

0
d�

L
@vF

2u
vF
�

L
@vF

�
SAG�2

2	
� �; (14)

where the integral is necessary due to the dependence of
u=vF on �. The first fringe due to Fabry-Perot interference
is when 
FP2L=@vF � �. Using L � 7 
m and vF �
8	 105 m=s, and 	 � 2:5 eV [24], we obtain
VSAG
g =VFP

g � 
SAG=
FP � 300, which agrees with the ex-
periment up to a factor of 2. This extra factor might be due
to the Fabry-Perot interference arising not from the loop,
but from the shorter sections of the nanotube. The experi-
mental results are also consistent with the fact that the
Fabry-Perot interference is expected roughly at TFP

c �
2�@vF
L � 10 K. Since currently only two samples of the

loop geometry are available, we limit ourselves to the
order-of-magnitude analysis above, and defer a detailed
analysis of the experiment to a future publication.

In this Letter we discussed the Sagnac and Fabry-Perot
interference in interacting nanotube loops, with vR �
vL � 2u � 0. We found that Vg changes the ‘‘carrier
wave’’ and induces fluctuations that depend mostly on
the bare dispersion of the nanotube, while Vsd produces
fluctuations whose periods depend on the velocities of the
nonequilibrium hydrodynamic modes. From these conduc-
tance fluctuations, one could in principle extract all hydro-
dynamic velocities, the interaction parameter, and the bare
electron dispersion. We also provided rough estimates of
the coherence temperatures, Tc, required to see the Sagnac
interference, and showed that it is much higher than that of
the Fabry-Perot interference. In fact, phonon scattering is
most likely the limiting factor for the Sagnac effect at high
temperatures. The estimates of Tc are expected to be
modified by a precise inclusion of interactions; this we
will pursue in a future publication, in addition to the
explicit dependence of G on Vsd. As mentioned above,
the Sagnac interference is closely related to the origin of
weak localization; therefore, its analysis could directly
determine the temperature and interaction dependence of
the electronic dephasing time �� (see further in
Refs. [31,32]). Here we showed that the Sagnac effect
clearly survives interactions at T � 0; therefore, our re-
sults can be interpreted as evidence for the divergence of
�� in an interacting non-Fermi-liquid electronic system.
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075301 (2005).

[11] F. E. Camino, W. Zhou, and V. J. Goldman, Phys. Rev. B
72, 155313 (2005).

[12] D. E. Feldman and A. Kitaev, Phys. Rev. Lett. 97, 186803
(2006).

[13] P. Bonderson, A. Kitaev, and K. Shtengel, Phys. Rev. Lett.
96, 016803 (2006).

[14] A. Stern and B. I. Halperin, Phys. Rev. Lett. 96, 016802
(2006).

[15] A. Yacoby, M. Heiblum, D. Mahalu, and H. Shtrikman,
Phys. Rev. Lett. 74, 4047 (1995).

[16] M. Sigristand et al., Phys. Rev. Lett. 98, 036805 (2007).
[17] P. A. Lee and A. D. Stone, Phys. Rev. Lett. 55, 1622

(1985).
[18] E. Abrahams et al., Phys. Rev. Lett. 42, 673 (1979).
[19] L. P. Gor’kov, D. Khmel’nitzkii, and A. I. Larkin, Pis’ma

Zh. Eksp. Teor. Fiz. 30, 248 (1979).
[20] C. M. Marcus et al., Phys. Rev. Lett. 69, 506 (1992).
[21] O. M. Auslaender et al., Science 295, 825 (2002).
[22] M. Kindermann, P. W. Brouwer, and A. J. Millis, Phys.

Rev. Lett. 97, 036809 (2006).
[23] G. Sagnac, C.R. des Academie des Sciences (Paris) 157,

708 (1913).
[24] M. Ouyang, J.-L. Huang, and C. M. Lieber, Phys. Rev.

Lett. 88, 066804 (2002).
[25] Another interesting work that relies on u � 0 is Ref. [26].
[26] D. E. Feldman, Phys. Rev. Lett. 95, 177201 (2005).
[27] Consistent with previous experiments with back-gate ge-

ometry, and somewhat higher than �� 10�3–10�2 in
Meunier et al., Phys. Rev. Lett. 93, 246801 (2004).

[28] Y. Oreg and A. M. Finkel’stein, Phys. Rev. Lett. 74, 3668
(1995).

[29] Another fainter fluctuation with period �Vg � 1 V seems
present at T � 64 K; we are unsure as to its origin.

[30] For a nonarmchair nanotube, the only difference would be
u! uarmchair cos�3��, with � � 0 for armchair, and varies
up to � � �=6 for zigzag tubes.

[31] B. L. Altshuler, A. G. Aronov, and D. E. Khmelnitskii,
J. Phys. C 15, 7367 (1982).

[32] J. von Delft, F. Marquardt, R. A. Smith, and
V. Ambegaokar, arXiv:cond-mat/0510557.

[33] A. Komnik and R. Egger, Phys. Rev. Lett. 80, 2881 (1998).
[34] H. W. C. Postma, M. de Jonge, Z. Yao, and C. Dekker,

Phys. Rev. B 62, R10 653 (2000).
[35] J. Jiang, J. Dong, and D. Y. Xing, Phys. Rev. Lett. 91,

056802 (2003).
[36] J. Cao et al., Phys. Rev. Lett. 93, 216803 (2004).

PRL 98, 246803 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
15 JUNE 2007

246803-4


