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The usual Faraday’s Law E � �d�=dt determines an electromotive force E which accounts only for
forces resulting from the charge of electrons. In ferromagnetic materials, in general, there exist non-
conservative spin forces which also contribute to E. These might be included in Faraday’s Law if the
magnetic flux � is replaced by �@=��e���, where � is a Berry phase suitably averaged over the electron
spin direction. These contributions to E represent the requirements of energy conservation in itinerant
ferromagnets with time dependent order parameters.
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Faraday’s E � �d�=dt is a fundamental law which
relates the electromotive force (emf) E to the time deriva-
tive of the total magnetic flux �. By definition [1], qE �H
C
~f � d~r, i.e., is the work done on a test charge q, at ~r, as it

is carried around a contour C, which may or may not
coincide with a physical electrical circuit. Usually [1] the
force ~f is taken to be q� ~E	 ~v
 ~B�, where ~v is the velocity
of C. In principle, this definition of E includes all contri-
butions to the emf E which arise from the charge q.
However, in nature, the charge carriers are elementary
particles, usually electrons, which carry a magnetic mo-
ment �, in addition to charge. Omitted in this definition of
the emf E are the forces of spin origin.

In this Letter, in order to include nonconservative spin
forces, it is proposed to generalize Faraday’s Law as

 E � �
@

��e�
d�
dt
; (1)

where � is a spin average of the geometric or Berry phase
[2] of both charge and spin origin. Of electromagnetic
origin, for an electron, when it is transported around a
contour C, [2,3] �e �

��e�
@

�, is just the phase of
Aharonov-Bohm and, with � � �e, Eq. (1) reproduces
the usual E � �d�=dt. The calculation of the spin con-
tribution to � is here illustrated by the simple example of a
ferromagnetic wire containing a free domain wall. Domain
walls are not essential, as will be shown elsewhere; spin
contributions to E occur in all situations where the order
parameter is time dependent.

The usual formulation of an itinerant ferromagnet needs
to be extended to include the Berry phase [2,3]. It is usual
to define ’�s , a potential energy which is different for
majority and minority electrons. In the superscript the
upper (lower) sign corresponds majority (minority) elec-
trons, a convention used throughout this Letter. In a simple
situation, ’�s � ��Bi� ~r�, where Bi�~r� is the magnitude of
the position, ~r, dependent internal field. However, the
evident force � ~r~r’�s , operative in the Stern-Gerlach ex-
periment, is conservative and cannot contribute to E. As

will be seen explicitly below, the spin Berry phase ��s �
�1=2�

R
~r ~A�s � d~r can be written in terms of a spin vector

potential [2,3] ~A�s , which makes a contribution to the total
spin force

 

~f �s � �
@

2

@ ~A�s
@t
� ~r~r’�s : (2)

The nonconservative spin forces which contribute to E are
reflected in ��s , ~A�s , and thereby ~f�s . In Eq. (2), @=2 is to be
recognized as the ‘‘spin charge’’ of an electron.

The very simple example studied here, see Fig. 1, is a
ferromagnetic wire, of cross-sectional area A, which lies
along the z direction and which contains a single free
domain wall. The easy axis is along the wire and perpen-
dicular anisotropy is zero. The ferromagnetic order pa-
rameter is indicated by the arrows and the unit vector
n̂� ~r; t�. This defines the direction of the internal exchange
field JMn̂�~r; t�. For such a wall centered at hz0i, n̂ makes
an angle ��z; t� � 2cot�1e���z�hz0i�t��=w� to the z axis,
where w is the wall width. For a density n of spin 1

2
electrons with a polarization p, for a centrally located

y
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FIG. 1 (color online). The wire is aligned along the z axis, as is
the longitudinal field ~B � B0ẑ. The wire contains a single
domain wall near its center. The unit vector n̂ defines the
direction of the ferromagnetic order parameter, and the internal
exchange field JMn̂, within this wall. This vector makes an
angle ��z� � 2cot�1e���z�hz0i�=w� to the z axis. The emf devel-
oped along the wire is measured by an ideal voltmeter connected
as shown. In this illustration the domain wall lies x� z plane. In
fact, the wall processes so that it makes a time dependent angle
� with this plane, with d�=dt � 2�B0=@.
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wall, the total z component of the magnetization hSzi �
1
2 @npA

R
dz cos� � @npAhz0i, following an integration

by parts, i.e., the position operator z0 � Sz=@npA, is to an
excellent approximation proportional to that for the total
spin, but see below. The wall makes a uniform angle ��t�
to x� z plane and undergoes a Larmor precession, i.e.,
d�=dt � 2�B0=@, due to the pressure exerted on the wall
by a static external magnetic field ~B � B0ẑ which is as-
sumed small compared to the internal field, i.e., 2�B0 
@JM.

The Berry phase is usually defined in terms of a
Hamiltonian H � ~R� which is dependent on the time
through the parameters comprising ~R�t�. The time depen-
dent  m�� ~R�, where	��� corresponds to majority (minor-
ity) spin, are solutions to the eigenenergy problem:
H � ~R� m�� ~R� � Em� ~R� m�� ~R�, and the Berry phase is [3]

 �� � 1
2

Z ~R
~a�s � d ~R; ~a�s � ~R; t� � 2ih m�j ~r ~R m�i: (3)

For an electron subject to a time dependent magnetic field
along the direction n̂�t�, the spin Berry phase ��s �
��1=2��, where �, Fig. 2(a), is the solid angle subtended
by the path of n̂�t� on a unit sphere [2,3]. In the frame of an
electron, as it passes through a domain wall, the effective
magnetic field follows the direction of the order parameter
n̂�~r; t�. This rotates, Fig. 2(b), from the South to North
Pole. By a change of variables, this motion in spin space
can be mapped to that in real space, as illustrated by
Figs. 2(b) and 2(c). Using Eq. (3), but with ~R identified
simply as ~r, is defined a real space vector potential ~A�s �

2ih ~k�j
~r~r ~k�i, such that the Berry phase ��s � �1=2�
R

~r ~A�s � d~r. While ~A�s and ��s for the path of Fig. 2(b) and
2(c) are gauge dependent, the force �@ ~A�s =@t and hence
the spin emf are gauge independent, as will be discussed
below.

In the present context the usual result ��s � ��1=2�� is
established within the widely accepted ferromagnetic
Stoner model [4]. There is an internal field proportional
to the order parameter Mn̂� ~r; t�, and the appropriate
Schrödinger’s equation is i@ @ � ~r;t�@t �H � ~r; t�, with

 H �

�
p2

2m
	 V� ~r� � JM~s � n̂�

2�B0

@
sz

�
; (4)

where V�~r� is a potential including any disorder and ~s the
electron spin vector. First a z-axis rotation u��t� �
e�isz�=@, with d�=dt � 2�B0=@ eliminates �2�B0=@�sz
and then [5] the axis of quantization is made parallel to n̂
by the y-axis rotation u� � e�is

0
y�=@. The result for

 0�~r; t� � u�u� � ~r; t� is i@ @ 
0� ~r;t�
@t �H 0 0� ~r; t�

 H 0 �

�
� ~p� @

2
~A0ts �2

2m
	 V� ~r� � JMs0z

�
; (5)

where a prime indicated a quantity in this new frame. The

spin transverse vector potential ~A0ts � �
2
@
s0y

@�
@z ẑ. In the

absence of this potential, Eq. (5) is the Stoner model
without a wall. The stationary solutions with label m,
 0m�� ~r; t� have energies E�m � E0

m � �@=2�JM, as the spin
eigenvalue s0z � �@=2. These time reversal conjugate pairs
correspond to majority or minority electrons as s0z � @=2
or �@=2, respectively. Their energies differ by @JM. If
V� ~r� � 0 (or is periodic), these are also eigenstates of the
(crystal) momentum ~p � @ ~k; i.e., the total force is zero and
~p is a constant of motion.

The results for the current example reflect the adiabatic
approximation and follow when ~A0ts is neglected, in Eq. (5).
There �@=2m� ~p � ~A0ts represents an effective transverse field
�@vF�=w, vF the Fermi velocity, and it is necessary that
this field be small compared to the internal field, i.e.,
@JM > @vF�=w, and implying the matrix elements of
�@=2m� ~p � ~A0ts between the � eigenstates  0m��~r� are small
compared to their energy difference @JM. That the energy
spread of these coupled states �E / vF=w is also small
compared to @JM is implicit. It is still the case that ~A0ts is
important since it leads to a small but highly important cor-
rection to the wall position which will be calculated below.

The initial H , Eq. (4), is time dependent only through
the single parameter ��t�, i.e., the Berry phase

 ��s �~r� � i
Z �

0

�
 m�j

@
@�

 m�

�
d�; (6)
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FIG. 2 (color online). The spin Berry phase ��s is ��=2,
where � is the solid angle subtended by the path in spin space,
as illustrated in (a). The electron in (c) is at position ~r and sees a
field with a direction defined by the Euler angles �, �, while, as
shown in (b), in spin space, the vector ~R, defined by the same
angles, passes from the South to North pole. The solid angle �
for such a path is gauge dependent; however, the solid angle ��
sweep out in a time �t is well defined, as illustrated in red in (d).
Reflecting the precession of the wall, the path has an angular
speed ! � _� � 2�B0=@ and the derivative _��s � ��1=2� _� �
� _�. While this is a ‘‘motional motive force’’ in spin space it is
not so in real space since in (c) the electron has no transverse
velocity.
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where the expectation value in Eq. (6) is with respect to the
laboratory frame spinor wave function,  m�� ~r; t� �
u�1
� u�1

�  0m�� ~r; t�, and ��s �~r� is defined at each real space
point, explicitly,

 ��s � ��1=2�
Z �

0
cos�d� � ��1=2� cos��; (7)

which is just ��1=2�� but with an unusual specific gauge
in which half of the Dirac string [1] leaves each of the
South and North Poles; i.e., a path which encircles
either Pole picks up a � phase. The real space ~A�s � ~r; t� is
then determined by writing ��s � �1=2�

R
~r ~A�s � ~r; t� � d~r,

whence using the result ��s � ��1=2� cos��, it follows
~A�s � 2�@=@z���s ẑ � ���@=@z� cos�ẑ.

The mathematical equivalence, to within the definition
of charge, of the Berry phases of electromagnetic and spin
origin [3] is a sufficient proof that there is a spin force
~fnc � ��@=2��@ ~A�s =@t�, as in Eq. (2), acting on an elec-
tron. Explicitly the ~fnc � ��@=2��d�=dt��@=@z� cos�ẑ,
using ~A�s from above. The spin contribution to the motive
force is therefore E�s � �@=2e�

H
�@ ~A�s =@t� � d~r; however,

~A�s is only finite in the vicinity of the wall, so this contour
integral simplifies to

R
1ẑ
�1ẑ�@ ~A

�
s =@t� � d~r. This is a gauge

invariant quantity since it is given by the limit �t! 0

of �I �
R
1ẑ
�1ẑ�

~A�s � ~r; t	�t� � ~A�s �~r; t�� � d~r. Mapped to

spin space, I�t� �
R
1ẑ
�1ẑ

~A�s �~r; t� � d~r �
R
C‘
~a�s � ~R; t� � d ~R,

where C‘ is the longitude with � � 0, while for I�t	 �t�,
� � �d�=dt��t. It follows �I � I�t	�t� � I�t� �H

�C ~a
�
s � d ~R, where the contour �C corresponds to the

edge of the shaded region in Fig. 2(d). Since �C is closed,
from the definition Eq. (3) this indeed corresponds to a
gauge invariant infinitesimal Berry phase d��s � dI�t�=2
and the result,

 E �s � �
@

��e�
d��s
dt

: (8)

Alternatively, using the relationship ��s � ��1=2��, this
can be written as

 E �s � �
@

2��e�
d�

dt
; (9)

i.e., in terms of the rate at which solid angle is swept out in
spin space. Since �d�=dt� � 2�B0=@ this leads to E�s �
�2�B0=��e�.

Given Ee � �d�=dt is the motive force due to charge,
the total Ee 	 E�s is different for majority and minority
electrons. When the transport in an electric field ~E alone
can be described by conductivities, ��, such that the cur-
rent densities ~J� � �� ~E, then trivially J � J	 	 J� �
�E with � � �	 	 �� while the spin equivalent Js �
p�E � pJ, where p � ��	 � ���=� is the polarization
of the spin current. It follows that Ee 	 pE	s is an emf
which drives the charge current while E	s drives a pure spin
current. Faraday’s Law for the emf is therefore Eq. (1) with

 � � �e 	 p�
	
s (10)

as the average Berry phase. This is the principal result.
The nature of this spin contribution to Faraday’s Law is

subtle; it is necessary to account for the very small wall
displacements �z�0 induced by those of the individual
electrons, an effect which is contained in the vector poten-
tial ~A0ts . Since this is irrotational within the wall, the formal

solution of Eq. (5) is uA 0m�, where uA � e
i�1=2�

R
~r

~r0
~Ats�d~r0

and ~r0 is arbitrary. Consider the full Slater determinant �0

constructed with the  0m� and corresponding to a typical
state. Define UA, U�, and U� as the product over all
electrons of the uA, u�, and u�, respectively. These are
the rotations, etc. appropriate to the full Hilbert space.
Because the  0m� are spin eigenstates, with the approxi-
mation UA � 1, the �z�0 � 0. It follows that these cor-
rections are given by the expectation value of � �
U�1
A ~z0UA � ~z0 � U�1

A �~z0; UA�. Here z0 is the wall position
operator and ~z0 � U�U�z0U�1

� U�1
� . Reflecting the small-

ness of the �z�0 , � can be separated into a contributions
�z0 � i�1=2��

R
~r
~r0

~Ats � d~r
0; ~z0� for each electron. Then us-

ing the zeroth approximation, z0 � Sz=@Apn, where Sz is
the z component of the total spin, the �y in ~Ats commutes
with all the other spin operators contained in Sz, and so
�z0 � �i�1=2��1=@Apn��

R
~r
~r0

~Ats � d~r
0; ~sz�, where ~sz �

U�U�szU
�1
� U�1

� � u�u�szu
�1
� u�1

� � cos�sz � sin�sx.
Taking the expectation value of the expression for �z0 with
 0m� gives

 �z�0 � �
1

2Apn
�cos�� ~r� � cos��~r0��: (11)

While the derivation is difficult, the result is easily under-
stood. As an electron moves from ~r0 to ~r, its orientation
changes, causing the z component of the angular momen-
tum to change from��@=2� cos��~r0� to ��@=2� cos��~r�. In
order to conserve angular momentum, this change must be
transferred to the wall which thereby undergoes the dis-
placement �z�0 .

The existence of an nonconservative force ~fnc � fncẑ
then follows from the conservation of energy. There is a
pressure Pz � n�B0 exerted on the wall by the field B0

and the displacements �z�0 imply an amount of work
PzA�z�0 is done on the wall. In order to conserve en-
ergy, there must be a corresponding nonconservative force
~fnc � fncẑ acting on the electron such that fnc �
�@=@zPzA�z�0 � ��B0�@=@z� cos�. This is the force
��@=2��@ ~A�s =@t� which leads to the E�s .

Corresponding to the second term in Eq. (2) there is a
distinct conservative force ~fc � � ~r’�s �~r�, which is con-
tained in the dynamic phase [3] and reflects the posi-
tion dependent Zeeman term in the effective spin poten-
tial energy ’�s �~r� � ��@JM	�B0 cos��. Directly ~fc �
��B0�@=@z� cos�ẑ and which is the exact negative of ~fnc.

PRL 98, 246601 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
15 JUNE 2007

246601-3



This is no accident. Considered is an open circuit wire with
no currents. This is an equilibrium situation for which it
must be the case that the total spin force ~fc 	 ~fnc � 0, as is
illustrated in Fig. 3(a). This situation might be compared
with that for the usual motional emf, Fig. 3(b). In this case,
for an open circuit wire, the nonconservative force
��e�vB0 is equal and opposite to the conservative force
��e�E generated by charge accumulation at the ends of the
wire.

Consider, for contrast, the case when the wall is pinned
so that �z�0 � 0 and imagine for simplicity a half-metal
(majority spins only). Now, Fig. 3(c), ~fnc � 0, so the total
force is just ~fc � 0. This is not an equilibrium situation
and currents will flow. There will again be an accumulation
of charge and the resulting internal electric field produces a
force ~fe � ��e� ~E. When equilibrium is reached the new
total force ~fc 	 ~fe � 0. Both ~fc and ~fe derive from po-
tential functions and are conservative. In equilibrium the
total potential energy ’�~r� is therefore a constant. Since
there are no nonconservative forces there is no emf. A time
dependent order parameter is essential to the existence of a
spin derived emf.

Stern [6] has already shown a radio frequency (rf)
motive force and an associated rf current are induced in
mesoscopic ring pumped by an rf field. This situation has
been considered in more detail, e.g., by Ryu [7]. Berger [8]
and others [9] have discussed the generation of direct

current (dc) spin currents by rf fields and the associated
motive forces. In each of these cases the source of energy
driving the motive force is external. In contrast, the motive
forces discussed here reflect internal degrees of freedom. In
none of these earlier works were the implications for
Faraday’s Law clearly recognized. It is emphasized, in
the absence of the motive forces discussed here, that the
‘‘classical’’ theory of current transport in ferromagnetic
materials with time dependent order parameters does not
conserve energy.

The equivalent of the vector potential, ~Ats, in the context
of domain walls, was first introduced by Bazaliy et al. [10].
This gauge field reflects the spatial dependence of the axis
of quantization. In contrast, the Berry phase vector poten-
tial ~A�s , of importance here, arises because these axes are
time dependent. This vector potential and associated forces
f�s did not occur in this earlier time independent gauge
theory.

The divergence of the differential form of Ampère’s Law
must reduce to the continuity equation for charge and that
of Faraday’s Law to the corresponding equation for mag-
netic charge [1]. In the absence of magnetic monopoles the
latter becomes �@=@t� ~r � ~B � 0. Here the equivalent of the
differential Faraday’s Law results from taking the curl of
the total force ~f	 ~f�s and taking the divergence of this
results in �@=@t� ~r � � ~B	 ~B�s � � 0, where ~B�s � ~r
 ~A�s
and using ~r � � ~r
 ~A� � 0 for any ~A. This reflects the
absence of sources for ~B�s .

In conclusion, in order to account for nonconservative
spin derived forces reflecting the conversion of stored
magnetic into electrical energy, Faraday’s Law should
involve the derivative of the spin average Berry phase
and not just the magnetic flux. An additional contribution
to the motive force occurs, with static external fields, in
circumstances where there is no usual electromagnetic
induction. The magnitude of Es � 10�4 V=T and very
recently emfs of this order have been observed [11]. This
emf is important in spintronic applications [12].
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FIG. 3 (color online). The balance of forces. In (a), shown in
blue, is ’s the spin potential energy for the majority spins. The
difference in potential energy at the ends is 2�B0. The net force
~fc 	 ~fnc � 0 corresponding to equilibrium. (b) Compare this
with the forces which occur when there is the usual motional
emf. Charge accumulates at the ends of the bar producing an
electrical potential energy ’e the equivalent of the ’s. The
resulting conservative force ��e�E is equal and opposite to the
nonconservative force ��e�vB, to give a null net force. (c) If the
wall is fixed so that �z�0 � 0, the initial potential is again that
due to the Zeeman energy shown in blue. However, since now
~fnc � 0 there is a force ~fc on the electrons which leads to an
accumulation of charge such that the total force ~fc 	 ~fe � 0,
corresponding again to equilibrium. In purple is the electrical
potential, the mirror image of the Zeeman energy, and the flat
sum, shown in green.
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