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We show that partial dynamical symmetries can occur at critical points of quantum phase transitions, in
which case underlying competing symmetries are conserved exactly by a subset of states, and mix
strongly in other states. Several types of partial dynamical symmetries are demonstrated with the example
of critical-point Hamiltonians for first- and second-order transitions in the framework of the interacting
boson model, whose dynamical symmetries correspond to different shape phases in nuclei.
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Symmetries play a profound role in determining the
critical behavior of dynamical systems. Their significance
was recognized in Landau’s classic theory of thermal phase
transitions [1] and in the renormalization group of critical
phenomena [2]. An equally important role is played by
symmetries in quantum phase transitions (QPT) or ground-
state energy phase transitions [3], which occur at zero
temperature as a function of a coupling constant. Such
structural changes are currently of great interest in differ-
ent branches of physics. QPTs occur as a result of a
competition between terms in the Hamiltonian with differ-
ent symmetries which lead to considerable mixing in the
eigenfunctions, especially at the critical point where the
structure changes most rapidly. In the present work we
address the question of whether there are any symmetries
(or traces of) still present at the critical points of QPT. We
show that particular symmetry constructions, called partial
dynamical symmetries, can survive at the critical point in
spite of the strong mixing. The feasibility of such persist-
ing symmetries gains support from the recently proposed
[4] and empirically confirmed [5] analytic descriptions of
critical-point nuclei, and the emergence of ‘‘quasidynam-
ical symmetries’’ [6] in the vicinity of such critical points.

A convenient framework to study symmetry aspects of
QPTs are models where the Hamiltonian is expanded in
elements of a Lie algebra (G0), called the spectrum gen-
erating algebra. A dynamical symmetry occurs if the
Hamiltonian can be written in terms of the Casimir opera-
tors of a chain of nested algebras of G0,

 G0 � G1 � . . . � Gn; (1)

terminating with an invariant algebra Gn. The following
properties are then observed. (i) All states are solvable and
analytic expressions are available for energies and other
observables. (ii) All states are classified by quantum num-
bers, j�0; �1; . . . ; �ni, which are the labels of the irreduc-
ible representations (irreps) of the algebras in the chain.
(iii) The structure of wave functions is completely dictated
by symmetry and is independent of the Hamiltonian’s
parameters. Partial dynamical symmetry (PDS) corre-
sponds to a particular symmetry breaking for which some

(but not all) of the above mentioned virtues of a dynamical
symmetry are retained. PDS of type I corresponds to a
situation where some of the states have all the dynamical
symmetry. In this case, properties (i)–(iii) are fulfilled
exactly, but by only a subset of states. PDS of type II
corresponds to a situation for which all the states preserve
part of the dynamical symmetry. In this case there are no
analytic solutions, yet selected quantum numbers (of the
conserved symmetries) are retained. This can occur, for
example, when, the Hamiltonian preserves only selected
symmetries Gi � Gn in the chain (1), and only their irreps
are unmixed. PDS of type III has a hybrid character, for
which some of the states preserve part of the dynamical
symmetry. PDS of various types have been shown to be
relevant to nuclear and molecular spectroscopy [7–12] and
to mixed systems with coexisting regularity and chaos [13].
All examples of PDS encountered so far involved stable
limits of structure. In the present work we show the rele-
vance of the PDS notion to the more complicated case of a
phase transition.

As a concrete example, we consider the interacting
boson model (IBM) [14], widely used in the description
of quadrupole collective states in nuclei, in terms of a
system of N monopole (s) and quadrupole (d) bosons,
representing valence nucleon pairs. The spectrum generat-
ing algebra isG0 � U�6� and the invariant algebra isGn �
O�3�. The three dynamical symmetry limits of the model
and corresponding bases are
 

U�6� � U�5� � O�5� � O�3� jN; nd; �; ~�; Li (2a)

U�6� � SU�3� � O�3� jN; ��;��; K; Li (2b)

U�6� � O�6� � O�5� � O�3� jN;�; �; ~�; Li: (2c)

The quantum numbers N, nd, ��;��, �, �, and L label the
relevant irreps ofU�6�, U�5�, SU�3�,O�6�,O�5�, andO�3�,
respectively. ~� and K are multiplicity labels needed for
complete classification of selected states in the reductions
O�5� � O�3� and SU�3� � O�3�, respectively. The ana-
lytic solutions of these dynamical symmetries resemble a
spherical vibrator, axially deformed rotor and deformed
�-soft rotor for the U�5�, SU�3�, and O�6� chains, respec-
tively. This identification is consistent with the geometric
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visualization of the model in terms of a potential surface
defined by the expectation value of the Hamiltonian in the
coherent (intrinsic) state [15,16]

 j�;�;Ni � �N!��1=2�byc �Nj0i; (3)

where byc � �1� �2��1=2�� cos�dy0 � � sin��dy2 �
dy�2�=

���
2
p
� sy	. For the general IBM Hamiltonian with

one- and two-body interactions, the potential surface reads

 E��;�� � E0 � N�N � 1�
�a�2 � b�3 cos3�� c�4	

�1� �2�2
:

(4)

The coefficients E0, a, b, c involve particular linear com-
binations of the Hamiltonian’s parameters [17]. The quad-
rupole shape parameters (�;�) at the global minimum of
E��;�� define the equilibrium shape for a given
Hamiltonian. The shape can be spherical (� � 0) or de-
formed (�> 0) with � � 0 (prolate), � � 	=3 (oblate), or
� independent (b � 0).

Phase transitions can be studied by IBM Hamiltonians of
the form H1 � gH2 involving terms from different dy-
namical symmetry chains [16]. The nature of the phase
transition is governed by the topology of the corresponding
surface (4), which serves as a Landau’s potential with the
equilibrium deformations as order parameters. The condi-
tions on the surface at the critical points of first- and
second-order transitions are
 

1st order: b2 � 4ac; a > 0; b � 0 (5a)

2nd order: a � 0; b � 0; c > 0: (5b)

The first-order critical surface (5a) has degenerate spheri-
cal and deformed minima at � � 0 and (� � 2a=jbj; �0),
with �0 � 0�	=3� for b > 0 (b < 0). The second-order
critical surface (5b) is independent of � and behaves as
�4 for small �. The conditions in Eq. (5) fix the critical
value of the control parameter (g � gc) which, in turn, de-

termines the critical-point Hamiltonian. IBM Hamiltonians
of this type have been used extensively for studying shape
phase transitions in nuclei [6,18–21]. We now show that a
large class of such critical-point Hamiltonians exhibit PDS.

The spherical to deformed �-soft shape phase transition
is modeled in the IBM by the Hamiltonian
 

H � 
n̂d � A�dy 
 dy � �sy�2	�H:c:	


 � 4�N � 1�A;
(6)

where H.c. stands for Hermitian conjugate and the dot
implies a scalar product. The n̂d term is the d-boson
number operator (eigenvalues nd), which is the linear
Casimir operator of U�5�. The A term is related to the
Casimir operator of O�6� [14]. For the indicated ratio of
coefficients, the above H satisfies condition (5b); hence, it
qualifies as a second-order critical Hamiltonian. The first
(second) term in Eq. (6) has O�6� [U�5�] selection rules
�� � 0;�2 (�nd � 0;�2), and both terms are O�5� sca-
lars. Consequently, the eigenstates of H have good O�5�
symmetry (�), but are mixed strongly with respect to both
U�5� and O�6� [19]. Since both U�5� and O�6� are broken
whileO�5� � O�3� are preserved, by definition, the critical
Hamiltonian has anO�5� PDS of type II. In fact, sinceO�5�
is a good symmetry common to both chains (2a) and (2c),
the O�5� PDS is valid throughout the U�5�-O�6� transition
region.

A recent study of QPT within the IBM has shown that,
apart from rotational terms which do not affect the poten-
tial surface of Eq. (4), the critical Hamiltonian for a spheri-
cal to prolate-deformed shape phase transition can be
transcribed in the form [21]

 H��0� � h2P
y
2 ��0� 
 ~P2��0�; (7)

where Py2���0� � �0s
ydy� �

��������
7=2

p
�dydy��2�� , ~P2���0� �

��1��P2;����0�, and h2; �0 > 0. The corresponding sur-
face in Eq. (4) has coefficients a � h2�

2
0, b � 2h2�0, c �

h2, which satisfy condition (5a). This qualifies H��0� as a
first-order critical Hamiltonian whose potential accommo-
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FIG. 1 (color online). Spectrum of H��0 �
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2
p
�, Eq. (7), with

h2 � 0:1 and N � 10. L � 02; 31 are solvable U�5� states of
Eq. (9). L�K � 01� and L�K � 21� are, respectively, solvable
SU�3� states of Eq. (10a) and Eq. (10b) with k � 1.
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FIG. 2. U�5� (nd) and SU�3� [��;��] decomposition of se-
lected spherical and deformed states in Fig. 1.
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dates two degenerate minima at � � 0 and ��;�� �
��0; 0�. H��0� is constructed to have the equilibrium in-
trinsic state j� � �0; � � 0;Ni, Eq. (3), as a zero-energy
eigenstate. Rotational invariance ensures that states
j�0;N;Li, of good O�3� symmetry L projected from this
intrinsic state, remain zero-energy eigenstates. H��0� then
has a solvable deformed ground band,

 j�0;N;Li E � 0 �L � 0; 2; 4; . . . ; 2N�: (8)

It also has the following solvable spherical eigenstates

 

jN; nd � � � L � 0i E � 0 (9a)

jN; nd � � � L � 3i E � 3h2��2
0�N � 3� � 5	: (9b)

As seen in Figs. 1–4, the remaining states in the spectrum
of H��0� are either predominantly spherical (with charac-
teristic dominance of single nd components) or deformed
states (with a broad nd distribution) arranged in several
excited bands [21].

The critical Hamiltonian of Eq. (7) with �0 �
���
2
p

is a
special case of a Hamiltonian shown in [7] to have SU�3�
PDS. This comes about because the sequence of states
jki / �Py2;2�

���
2
p
�	kj� �

���
2
p
; � � 0;N � 2ki are eigenstates

of H��0 �
���
2
p
�. These are lowest-weight states in the

SU�3� irreps ��;�� � �2N � 4k; 2k� with 2k � N. In the
nuclear physics terminology they are referred to as intrin-
sic states representing deformed ground (k � 0) and �k

bands, with angular momentum projection (K � 2k) along
the symmetry axis. Since H��0 �

���
2
p
� is an O�3� scalar,

the states of good L projected from jki remain eigenstates
with quantum numbers jN; ��;��K;Li of the SU�3� chain
(2b), and form solvable bands,

 

jN; �2N;0�K� 0;Li E� 0

�L� 0;2;4; . . . ;2N� (10a)

jN; �2N� 4k;2k�K� 2k;Li

E� 3h2�2N� 1� 2k	k

L�K;K� 1;K� 2; . . . ; �2N� 2k� k> 0: (10b)

In addition,H��0 �
���
2
p
� has the spherical states of Eq. (9),

with good U�5� symmetry, as eigenstates. The remaining
levels of H��0 �

���
2
p
�, shown in Fig. 1, are calculated

numerically. Their wave functions are spread over many
U�5� and SU�3� irreps, as is evident from Fig. 2. This
situation, where some states are solvable with good U�5�
symmetry, some are solvable with good SU�3� symmetry,
and all other states are mixed with respect to bothU�5� and
SU�3�, defines a U�5� PDS of type I coexisting with a
SU�3� PDS of type I.

The Hamiltonian of Eq. (7) with�0 � 1 is a special case
of a Hamiltonian shown in [9] to have O�6� PDS. This
comes about because the intrinsic state of Eq. (3) with
(�0 � 1; � � 0) is a zero-energy eigenstate of H��0 � 1�
with good O�6� symmetry (� � N). The O�3� invariance
of the Hamiltonian ensures that states of good L projected
from j�0 � 1; � � 0;Ni form a solvable ground band with
good O�6� character,

 jN;��N;Li E� 0 �L� 0;2;4; . . . ;2N�: (11)

In addition, H��0 � 1� has the spherical states of Eq. (9),
with good U�5� symmetry, as eigenstates. The remaining
eigenstates in Fig. 3 are mixed with respect to both U�5�
and O�6�, as is evident from the decomposition shown in
Fig. 4. Apart from the solvable U�5� states of Eq. (9), all
eigenstates of H��0 � 1� are mixed with respect to O�5�
[including the solvable O�6� states of Eq. (11), as shown in
Fig. 5]. It follows that the Hamiltonian has a subset of
states with goodU�5� symmetry and a subset of states with
good O�6� but broken O�5� symmetry, and all other states
are mixed with respect to both U�5� and O�6�. These are
precisely the required features of U�5� PDS of type I
coexisting with O�6� PDS of type III.
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FIG. 3 (color online). Spectrum of H��0 � 1�, Eq. (7), with
h2 � 0:1 and N � 10. L � 02; 31 are solvable U�5� states of
Eq. (9). L�K � 01� are solvable states of Eq. (11) with goodO�6�
but broken O�5� symmetry.
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For arbitrary values of �0, the spherical states with good
U�5� symmetry, Eq. (9), are still eigenstates of H��0�,
Eq. (7); hence, the U�5� PDS of type I is still valid. In
general, the deformed states of Eq. (8), are not associated
with any IBM dynamical symmetry but, nevertheless, are
still solvable. This situation may be referred to as partial
solvability. Since the wave functions of the solvable states
are known, it is possible to obtain closed form expressions
for related observables. For example, for the electromag-
netic E2 operator, T�E2� � dys� sy ~d� ��dy ~d��2�, the
necessary matrix elements for transitions involving states
in Eqs. (8) and (9) are T1  h�;N;LjjT�E2�jj�;N;L� 2i
and T2  h�;N;L � 2jjT�E2�jjN; nd � � � L � 0i,
 

T1 � CL
��a1��L�N�1��� � a2��L�2�

N�1 ���	

���L�N ����
�L�2�
N ���	1=2

;

T2 � �N=�N!��2�N ���	
1=2;

(12)

where CL �
���������������
2L� 5
p

�L� 2; 0; 2; 0jL; 0� is proportional
to a Clebsch-Gordan coefficient, a1 � 1� � ��L=�2L�
3�, a2 � 1� � ���L� 3�=�2L� 3� with �� �

��������
2=7

p
�, and

��L�N ��� is a normalization factor given in [21].
As discussed, the spectrum of H��0�, Eq. (7), exhibits

coexistence of spherical and deformed states, signaling a
first-order transition. In particular, the spherical L � 0
state, Eq. (9a), is exactly degenerate with the ground
band, Eq. (8), and for �0 �

���
2
p

also the spherical L � 3
state, Eq. (9b), is degenerate with the SU�3� � band,
Eq. (10b) with k � 1. Adding to the Hamiltonian the
Casimir operator of O�3�, contributes an exact L�L� 1�
splitting with no effect on wave functions. The remaining
degeneracy of states with the same L can be lifted by
adding a small one-body term n̂d. With that, the spherical
U�5� states of Eq. (9) remain solvable eigenstates.
However, the n̂d term destroys the exact solvability and
partial symmetry of the deformed states, Eq. (8). The
corresponding leading-order shifts can be estimated from
h�;N;Ljn̂dj�;N;Li � N � ��L�N�1���=��L�N ���.

In summary, we have shown the relevance of the PDS
notion to critical points of QPT, with phases characterized
by Lie-algebraic symmetries. In the example considered,
second-order critical Hamiltonians mix incompatible sym-
metries but preserve a common lower symmetry, resulting
in a single PDS with selected quantum numbers conserved.
First-order critical Hamiltonians exhibit distinct subsets of
solvable states with good symmetries, giving rise to a
coexistence of different PDS. The ingredients of an alge-
braic description of QPT is a spectrum generating algebra
and an associated geometric space, formulated in terms of
coherent (intrinsic) states. The same ingredients are used in
the construction of Hamiltonians with PDS. These, in
accord with the present work, can be used as tools to
explore the role of possibly partial symmetries in govern-
ing the critical behavior of diverse dynamical systems
undergoing QPT.
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