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(Received 8 November 2006; published 14 June 2007)

We propose a Raman spectroscopy technique which is able to probe the one-particle Green function, the
Fermi surface, and the quasiparticles of a gas of strongly interacting ultracold atoms. We give quantitative
examples of experimentally accessible spectra. The efficiency of the method is validated by means of
simulated images for the case of a usual Fermi liquid as well as for more exotic states: specific signatures
of, e.g., a d-wave pseudogap are clearly visible.
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The remarkable advances in handling ultracold atomic
gases have given birth to the new field of ‘‘condensed
matter physics with light and atoms.’’ Key issues in the
physics of strongly correlated quantum systems can be
addressed from a new perspective in this context. The
observation of the Mott transition of bosons in optical
lattices [1], the superfluidity of fermionic gases [2], and
the recent imaging of Fermi surfaces [3] have been impor-
tant milestones in this respect. Ultimately fermionic atoms
in optical lattices [4,5] could help in understanding some
outstanding problems of condensed matter physics, such as
high-temperature superconductivity. In this context, a key
issue is the nature of the low-energy excitations of low-
dimensional strongly interacting Fermi systems. There is
abundant experimental evidence that those are highly un-
conventional, departing from standard Fermi-liquid theory.

In this Letter, we study how to probe the one-particle
excitations of interacting ultracold fermionic atoms using
stimulated Raman spectroscopy. This technique has been
considered previously in the context of cold atomic gases,
as an outcoupling technique to produce an atom laser [6],
and also as a measurement technique for bosons [7–10]
and fermions [11,12]. Here, we demonstrate that this tech-
nique provides, for strongly interacting fermion gases, a
momentum-resolved access to key properties of the quasi-
particle excitations, such as their dispersion relation and
lifetime. It also allows for a determination of the Fermi
surface itself in strongly interacting regimes, whereas pre-
viously demonstrated methods [3] apply to the noninter-
acting case. Furthermore, it is shown that the suppression
of quasiparticles due to a pseudogap in the excitation
spectrum can also be detected by this method.

In a conventional Fermi liquid, low-energy excitations
are built out of quasiparticles [13]. Those are characterized
by their dispersion relation, i.e., the energy �k (measured
from the ground-state energy) necessary to create such an
excitation with (quasi)momentum k. The interacting sys-
tem possesses a Fermi surface (FS) defined by the location
in momentum space on which the excitation energy van-

ishes: �kF � 0. Close to a given point on the FS, the
quasiparticle energy vanishes as: �k � vF�kF� � �k�
kF� � � � � , with vF the local Fermi velocity (inversely
related to the effective mass). Quasiparticle excitations
have a finite lifetime ��1

k and are well defined provided
�k vanishes faster than �k as the FS is approached (�k �
�2

k in Fermi-liquid theory). In contrast, one-particle exci-
tations in the ‘‘normal’’ (i.e., nonsuperconducting) state of
the cuprate superconductors (SC) reveal strong deviations
from this behavior [14]. Reasonably well-defined quasi-
particle excitations only exist close to the diagonal direc-
tion of the Brillouin zone (the ‘‘nodal’’ direction along
which the d-wave gap vanishes in the SC phase), and
even there �k is rather large. Away from this direction
(in the ‘‘antinodal’’ region), excitations appear to be short-
lived and gapped already above the SC critical temperature
(the so-called pseudogap phenomenon). This momentum-
space differentiation is a key to the physics of cuprates.

Experiments probing directly nondiagonal one-particle
correlators h y�r; t� �r0; t0�i of a many-body system are
therefore highly desirable but also relatively scarce. Most
physical measurements indeed provide information on
two-particle correlators of the form h y�r; t� �r; t��
 y�r0; t0� �r0; t0�i [15]. Examples are neutron scattering
or transport measurements in the solid-state context [13]
and Bragg scattering [18] or noise correlations measure-
ments [19] in the cold atom context. For Bose systems with
a finite condensate density n0, the two-particle correlator is
closely related to the one-particle correlator via terms such
as n0h y�r; t� �r0; t0�i. By contrast, in Fermi systems, the
distinction between one- and two-particle correlators is
essential and specific measurement techniques of the for-
mer are requested.

In solids, angle-resolved photoemission spectroscopy
(ARPES) provides a direct probe of the one-particle spec-
trum [20], and has played a key role in revealing
momentum-space differentiation in cuprates [14]. It con-
sists in measuring the energy and momentum of electrons
emitted out of the solid exposed to an incident photon
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beam. In the simplest approximation, the emitted intensity
can be related to the single-electron spectral function, de-
fined at T � 0 and for !< 0, i.e., for holelike excitations
by A�k; !� �

P
njh�

N�1
n j kj�

N
0 ij

2��!��� En � E0�.
In this expression,  k is a destruction operator for an
electron with momentum k, �N

0 is the ground state of
the N-particle system, and �N�1

n are the eigenstates of
the system with one less particle. In a conventional Fermi
liquid, and for momenta close to the FS, the spectral
function can be separated [13] into a coherent quasiparticle
contribution and an incoherent contribution: A � AQP �

Ainc, with �AQP�k; !� ’ Zk�k=	�!� �k�
2 � �2

k
 and Ainc

widely spread in frequency. Only a finite fraction Zk < 1 of
the total spectral weight corresponds to long-lived quasi-
particle excitations.

In this Letter, we consider stimulated Raman spectros-
copy on a two-component mixture of ultracold fermionic
atoms in two internal states � and �0. Atoms are trans-
ferred from � into another internal state � � �;�0,
through an intermediate excited state �, using two laser
beams of wave vectors k1;2 and frequencies !1;2. If !1 is
sufficiently far from single photon resonance to the excited
� state, we can neglect spontaneous emission. Eliminating
the excited state, we write an effective Hamiltonian, V̂ �
C
R
dr y��r� ��r�ei�k1�k2��ray1a2 � H:c:, in which ay1 (a2)

denotes the creation (destruction) operator of a photon,
respectively, in mode 1 (2) and the constant C is propor-
tional to the product of the dipole matrix elements d�� and
d�� of the optical transitions and inversely proportional to
the detuning from the excited state.

The total transfer rate to state � can be calculated [7–9]
using the Fermi golden rule:
 

R�q;�� � jCj2n1�n2 � 1�
Z 1
�1

dt
Z
drdr0ei	�t�q��r�r0�


� g��r; r0; t�h �� �r; t� ��r0; 0�i: (1)

Here q � k1 � k2 and � � !1 �!2 �� with � the
chemical potential of the interacting gas and n1;2 the pho-
ton numbers present in the laser beams. Assuming that no
atoms are initially present in � and that the scattered atoms
in� do not interact with the atoms in the initial �;�0 states,
the free propagator for �-state atoms in vacuum is to be
taken: g��r; r0; t� � h0�j ��r; t� 

y
��r
0; 0�j0�i. The correla-

tion function entering (1) is proportional to the one-particle
Green function [21] h �� �r; t� ��r0; 0�i � �iG<

� �r0; r;�t�
of the strongly interacting Fermi system. For a uniform
system, the rate (1) can be related to the spectral function
A�k; !� of atoms in the internal state � by [8]

 R�q;�� /
Z
dknF�"k� ���A�k� q; "k� ���; (2)

in which the Green function has been expressed in terms of
the spectral function and the Fermi factor nF as [13]
G<
� �k; !� � inF�!�A�k; !�, and "k� is the band disper-

sion of �-state atoms.

In order to physically understand which information can
be extracted from a measurement of the rate (2), let us first
approximate the spectral function by A�k; !� �
��!� �k�, i.e., neglect the incoherent part and consider
quasiparticles with an infinite lifetime. The Raman rate
then reads at T � 0: R �

R
�k<0 dk��"k�q;� � �k ���.

Contributions to this integral come from momenta inside
the FS (�k < 0) which satisfy the Raman resonance con-
dition "k�q;� � �k � �. When the frequency shift � is
small, R vanishes since there is no available phase space
satisfying these constraints. The smallest frequency at
which a signal starts to be observed is �T � mink"k� �

"0
� [22]. This corresponds to a momentum transfer q �
�kF which lies itself on the FS (i.e., �kF

� 0) [23]. For �
very close to the extinction threshold (�� � ���T *

0), the region in momentum space inside which a sizable
transfer rate R is measured consists of a shell surround-
ing the FS, centered at a momentum q such that �� �

���q � vF�kF� � �q� kF�, and of width �qk �����������������
2M��
p

. In these expressions, M is the effective mass at
the bottom of the � band and vF is the Fermi velocity.

This analysis remains unchanged when considering qua-
siparticles with a finite lifetime ��1 (uniform along the
FS), the width of the momentum shell being simply re-
placed by �qk �

����������������
2M��
p

� �=vF. Hence, measuring the
Raman signal for � close to the extinction threshold �T
and sweeping over q provides a determination of the FS in
an interacting system (while the method of [3] applies to
noninteracting fermions). It also gives access to the veloc-
ity of quasiparticles (from the displacement of the mea-
sured signal as a function of �) and to their lifetime (from
the width of the momentum shell).

Examples of numerically simulated spectra for uniform
interacting systems are given in Figs. 1(a) and 1(b), where
a color intensity plot of the Raman rate (2) is shown for a
fixed value of the frequency shift close to threshold. In
1(a), we consider the case of a Lorentzian spectral function
centered around the free dispersion relation of a two-
dimensional square lattice: �k � �2t��coskx � cosky� �
�. In 1(b) a phenomenological form [24] of the spectral
function is used, which captures the main aspects of the
ARPES data in the non-SC (normal) state of high-
temperature superconductors. The key feature entering
this phenomenological form is a pseudogap with d-wave
symmetry �k � �0�coskx � cosky�, corresponding to a
depletion of low-energy excitations even when no long-
range SC order is present. �k vanishes along the zone
diagonal (nodes) and is maximum along �0; 0� � ��; 0�
(antinodes). A self-energy �2

k=�!� �k� is a convenient
modelization of this effect. In addition, finite lifetime
effects are introduced, resulting in the form �A�k;!��
�Im	!��k� i�1��2

k=�!��k� i�0�

�1. This corre-

sponds to a quasiparticle dispersion which is gapped out
except at the nodes. The width �k � �1 ��2

k�0=	�!�
�k�

2 � �2
0
 is largest near the antinodes. This form of
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A�k; !� also provides a reasonable qualitative description
of recent theoretical results for the two-dimensional
Hubbard model [25]. The momentum-space differentiation
encoded in the model spectral function is clearly visible in
Fig. 1(b), with nodal regions displaying quasiparticles
while antinodal ones are gapped out and short-lived. This
illustrates how the Raman spectroscopy method can be
used to determine the FS not only of a Fermi liquid but
also of a strongly interacting system with suppressed qua-
siparticles. In Fig. 2 we further show that the line shape of
the Raman signal for a fixed value of q does reveal the
essential features of the spectral function, namely, quasi-
particles at the nodes and a pseudogap at the antinodes.

Since most cold atom experiments are performed in a
trap, it is important to verify that the spatial inhomogeneity

does not spoil the predicted signatures. Within the local
density approximation, and assuming that the trap potential
only acts on the �;�0 states, the observed signal is the sum
of the contributions of the different points R of the trap,
with a local chemical potential �R � ��M!2

0R2=2.
The results are summarized in Figs. 1(c) and 1(d) for
physical situations such that the value of the chemical
potential at the trap center coincides with that of the
homogeneous system in Figs. 1(a) and 1(b). As expected,
the intensity map is now a superposition of the Fermi
surfaces corresponding to all the densities realized in the
trap. The outer shell delimited by the extinction of the
signal still gives a direct access to the FS corresponding
to the highest densities at the center of the trap. The typical
signatures of an unconventional state remain clearly visible
in the trap as well: in Fig. 1(d), the nodal-antinodal differ-
entiation is apparent in the outer shell of this plot, as seen
from the suppressed intensity along the antinodal direction.
A possible way of revealing the region around the Fermi
surface is to measure the intensity maps for two, slightly
different values of the frequency and/or the total atom
number, and then take their difference: the resulting dif-
ferential images for the trapped system (not shown) re-
cover the same qualitative features of the homogeneous
system shown in Figs. 1(a) and 1(b).

The discussion so far has assumed that it is possible to
repeat the measurement of the total rate R for several
different values of q. In some cases, a different scheme
with a momentum-selective detection of the scattered �
atoms may be instead favorable, quite similar to ARPES in
solids. A single value of q is used, and a time of flight
expansion of the � atoms cloud is performed (after sud-
denly turning off the trap and the lattice potential) in order
to reconstruct the momentum distribution of the atoms. As
shown in Fig. 3(a), the Raman resonance condition allows
for a selective addressing of the different regions in k by
tuning the frequency �. The number of Raman-scattered
atoms with final momentum k is proportional to the inte-
grand nF�"k� ���A�k� q; "k� ��� of (2). Figure 3(b)
shows that the resulting k-space intensity map is able to
reveal the details of the pseudogap physics, in particular, its
k dependence. By varying both � and q, Raman scattering
offers more possibilities for probing the system in a
momentum-selective way than microwave spectroscopy
techniques [26].

FIG. 2 (color online). Comparison be-
tween the spectral function A and the
Raman rate R=�� for two points in
momentum space indicated in Fig. 1. In
the nodal direction (N, left), the spec-
trum displays a quasiparticle peak, while
in the antinodal direction (A, right) a
depletion of the signal is observed at
low energy, corresponding to the pseu-
dogap.
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FIG. 1 (color online). Intensity plots of the Raman rate
R�q;��, for � close to threshold �T (�� � 0:01t�). (a) Non-
interacting fermions on the homogeneous 2D square lattice with
density n� � 0:22 and a Lorentzian broadening of the spectral
function ��0:4t� uniform in k space. (b) Model d-wave pseu-
dogap state (see text), with �0�0:1t�, �0�0:05t�, �1�0:4t�.
The plot is for a hole-doped system (n� � 0:45) with a nearest
(t�) and next-nearest neighbor (t0�) hopping, with t0�=t� � �0:3
(typical for cuprates, but similar effects are expected also for
smaller jt0�=t�j). (c),(d) Same as (a) and (b) in the presence of a
harmonic trap (!0 � 0:02t�). The pseudogap and nodal-
antinodal differentiation are clearly visible in both (b) and (d).
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As a final point, we discuss some orders of magnitude
which are important for the actual feasibility of the experi-
ments proposed in this Letter. Specifically, we consider 6Li
atoms (see also Ref. [12]) in the two lowest hyperfine states
j�i � jIz � 1; m � �1=2i and j�0i � j0;�1=2i. The
coupling between these two states can be made very large
thanks to the Feshbach resonance at 834 G. On the other
hand, if we choose the final state of the Raman process to
be j�i � j1; 1=2iwith the same nuclear spin component as
�, the interaction of j�i with both j�i and j�0i is non-
resonant, corresponding to a low value of the scattering
length a�;� ’ a�0;� ’ 2:5 nm [27]. This yields a typical
scale for the interaction energy between an atom in �
and the background in �;�0 which is smaller than the
typical bandwidth, and hence negligible. Furthermore, tak-
ing typical values for the lattice wavelength �� 800 nm,
the atomic density 	� �2=��3, and the recoil velocity v�
h=�M�� of atoms in state �, we evaluate the collision rate
to be �c � 	
v� 102 s�1. The Raman detection se-
quence can therefore be performed in a time scale of the
order of a few milliseconds, yielding an energy resolution
in the 100 Hz range. Losses due to inelastic transitions
from state � have a rate �10�12 cm3 s�1 and can be
neglected on this time scale.

In summary, we have proposed a Raman spectroscopy
technique which, analogously to ARPES in solid-state
physics, is able to probe the one-body Green function.
This technique can be used to obtain information on the
Fermi surface, and on the quasiparticles (or absence
thereof) of a gas of fermionic atoms, even in strongly
correlated states. In the near future, this technique may
play an important role in the experimental characterization
of the novel quantum states of matter that can be obtained
with ultracold atoms in optical lattices.
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FIG. 3 (color online). (a) Color plot illustrating the selective
addressing of k space by a proper choice of � (cf. color scale on
the left). (b) Time of flight k map obtained by integrating the
Raman intensity for �� � ���T varied in the range
	2:4t�; 6:8t�
. The dispersion relation of the � atoms is taken
as "k��"

0
��2t��2�coskx�cosky� with t� � 1:5t� (note that

interactions will renormalize downwards the effective t� even if
bare values are equal). Parameters are as in Fig. 1(c) and q � 0.
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