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We describe a model for the structures of randomly hyperbranched polymers in solution, and find a
logarithmic growth of radius with polymer mass. We include segmental overcrowding, which puts an
upper limit on the density. The model is tested against simulations, against data on amylopectin, a major
component of starch, on glycogen, and on polyglycerols. For samples of synthetic polyglycerol and
glycogen, our model holds well for all the available data. The model reveals higher-level scaling structure
in glycogen, related to the � particles seen in electron microscopy.
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Hyperbranched polymers have many short chains linked
together. Examples include amylopectin (AP) (a major
component of starch) [1], glycogen (the same chemical
composition as AP but more random in its branching
structure [2]), and synthetic polyglycerols [3]. We propose
a physical model for the average, radial, density profiles of
randomly hyperbranched polymers of given mass, which
fits experimental data for these three examples. Our treat-
ment does not model synthesis, but rather comparison of
the calculated random structure to experiment shows
where correlations are important. The experiments we
seek to understand separate polymers by their hydrody-
namic volume [4,5], such as size-exclusion chromatogra-
phy (SEC) and field-flow fractionation. Detectors in line
with the separation column give number and mass distri-
butions with hydrodynamic volume, and also radii of gy-
ration. Our model does not predict distributions of mass or
size, but rather the scaling of size with mass.

Many models for hyperbranched polymers assume regu-
lar architectures, some of which are discussed in Ref. [6].
de Gennes and Hervet predicted the relation between mass
and radius of a dendrimer [7]. They considered some
disorder, and found power laws for growth with molecular
weight. Later approaches allowed the structure to reach
equilibrium [8–11]. In particular, Zook and Pickett revis-
ited the original treatment by de Gennes and Hervet, and
obtained more realistic structures [12]. Our model has new
features that appear because our structures are much more
disordered, as branch points are made entirely at random,
rather than regularly spaced as for a dendrimer. We have
neglected a variety of effects, particularly electrostatics.
We show below that despite its simplicity the model agrees
with experiments, but we also show where it breaks down.

Hyperbranched polymers are made up of monomers
with one A group and more than one B group. Links in
the polymer are all of the form A-B, so that any hyper-
branched polymer has one free A group and many free B
groups [13]. Our model hyperbranched polymer is as-
sembled from simple units, such as linear chains, attached
to each other randomly. This assembly of the polymer does

not model synthesis; it is a means of randomly arranging
branch points. The simple units themselves have one free A
group and many free B groups, and fluctuate in conforma-
tion, so that their description as an average density profile
is justified. In the simplest version of the model, each unit
is a random walk, of step length �l, where l is the length of
a single monomer. We assume for simplicity � is constant
for any given polymer. This simplest version of our model
is inspired by experiments in which an enzyme is added to
AP and glycogen that snips each branch point with 100%
efficiency. One application of our model is to reassemble
theoretically this ‘‘debranched’’ distribution of chains and
to compare to real AP or glycogen (see Fig. 3 below). We
start from one walk, and add others, each time choosing a
new branch point at random. Simulations based on this
model have been published elsewhere [14,15]. Here we
describe a much more general analytic approach: we can
build up our hyperbranched polymer from simple units
which may have any internal branching structure [6]. We
attach each new unit’s single, free A group to one of the B
groups in the polymer already, chosen at random, then the
new unit’s B groups are available for further addition.

References [13,16,17] calculate the number- and
weight-average molecular weights of randomly hyper-
branched polymers, among other quantities. Our work
differs in that we are not distributing monomers between
polymers, but considering the ensemble-average growth of
a single polymer, and more importantly in that we are
introducing the effects of forbidden monomer overlap.
Each polymer in this ensemble has the same mass, and
we increase this mass, calculating its effect on the polymer
size.

There are two contributions to the probability of suc-
cessful addition of a new unit to the polymer. The first is
the need to attach to a monomer: the probability of addition
at some point R will increase with the density at R. The
point R is the point at which a new unit’s A group attaches
to one of the existing polymer’s B groups, and the function
��r�R� describes that new unit’s distribution of B groups
that are then available for further addition. The second
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contribution is the availability of physical space to accom-
modate the new unit, and the higher the density at R the
more likely it is that addition will fail. At first neglect the
second contribution, so that every free branch point is
equally likely to accommodate the next simple unit. The
probability of the (N � 1)th unit attaching at the point R is
proportional to the density ��R; N�. The change in density
of available B groups at r on formation of an A-B link at R
is ��r�R�. The function � is Gaussian, with variance �2.
We integrate over all possible addition sites, and normalize
(NB:

R
��r; N�dr � N), to obtain
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where � denotes convolution. Taking the Fourier transform
of Eq. (1) leads to N@N�̂ � �̂ �̂ , where f̂�q� is the three-
dimensional Fourier transform of f�r�. We can also permit
the sizes of the simple units to vary, and for simplicity
assume that �2 follows an exponential distribution (a re-
striction which will be lifted in a later paper). If the units
are themselves simple (unbranched) chains in a � solvent
then this is equivalent to exponentially distributed simple
chain lengths, shown to be a moderate approximation for
AP [18]. In practice the exact shape of the distribution does
not greatly affect our results, so we use the exponential
distribution for all calculations.

We can rearrange the Fourier transform of Eq. (1) and
take the average over the distribution of �2 to obtain

 

@hlog�̂i
@ logN
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where �̂1 is the value of �̂�q� at N � 1. The moments of �
are obtained from �̂ by differentiation [19],

 r2
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where s2 � h�2i, r is distance from the center of mass, rg
is the polymer’s radius of gyration, r0 is the initial (N � 1)
radius of gyration, and h�if is an average over all space with
the probability density f. The constant K is 3 for Gaussian
� and constant �2. If the simple units are exponentially
distributed in �2, then we have K � 6. Growth as r2

g �

log�N� has been predicted for dendrimers [8,11], and it is
intriguing to see that the present model predicts the same
behavior for a much less branched and more disordered
structure.

Now we turn to the second effect: forbidden overlap
(self-avoidance), also referred to as segmental crowding.
Let �0 be the density where no further addition is possible.
We choose the overall probability that a chain will success-
fully add at r to be

 PN�r� �
1

C
��r; N�

�
1�

��r; N�
�0

�
�
; (4)

where C is the normalization constant given by
R
Pdr � 1.

This equation is chosen for its simplicity, and so that the
probability of addition vanishes when � � �0. For den-
drimers various factors can substantially affect the con-
formation [20,21]. Here we are treating the simplest case
possible, where Eq. (4) describes forbidden overlap of
segments. More realistic interactions are left for future
work, but the simulation results discussed below show
that this simple form is sufficient when forbidden overlap
is the only nonbonded interaction. We obtain the equation
for self-avoiding polymers by replacing the factor �=N on
the right-hand side of Eq. (1) with PN�r�:

 

@��r; N�
@N

� PN � ��r�: (5)

This equation describes the formation of new branch
points, i.e., the formation of A-B links. Where we allow
the sizes of the simple units to fluctuate randomly, we
numerically integrate Eq. (5) with steps of �N � 1, select-
ing a new value of �2 from an exponential distribution at
each step; this step can be made larger for cases requiring
very large values of N. In the simplest treatment we put
� � 1. This choice captures most of the features of the
more elaborate variants of the model, and is used for the
analysis of polyglycerol and glycogen below. For calcula-
tions involving starch we use � � 5. This choice is made to
account for the length of the simple chains: each is mod-
eled as 5 segments, each 5 monomers long. A factor of
(1� �=�0) appears for each of the five steps as the chance
that it will fit, giving � � 5.

A typical result for r2
g is shown in Fig. 1. Two regions of

growth are apparent, with a smooth crossover from one to
the other. The light polymers grow logarithmically. The
heavier ones grow as a power law. If we include the random
choice of simple unit sizes and forbidden overlap, then in
place of the low molecular weight growth as r2

g � log�N�
[Eq. (1)], we have rg � log�N�. The former has been seen
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FIG. 1. A typical prediction for the radius of gyration from our
model with parameters typical of a polysaccharide. If we ran-
domly vary the sizes of units making up the polymer, we find
m � 1 over up to three decades in mass. The points are from
simulations that are described in detail in Refs. [14,15], for � �
4 (see discussion with Fig. 3 for other parameters).
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for dendrimers; the latter is new as far as we know. We see
this new growth for up to three decades in mass before the
power law growth with r3

g / M takes over. An upper bound
on the radius of a dendrimer has been reported to grow as
ln�N� [22].

The points in Fig. 1 are the radii of gyration of polymer
chains generated in Monte Carlo simulations using meth-
ods described in detail in [14,15]. These structures are
made by attaching random walks with only the constraints
of hyperbranching and nonoverlapping chains. The simu-
lations generate many structures at each mass, so that the
branching structures and shapes of the randomly hyper-
branched polymers are well sampled. Any single simulated
structure is likely to be irregular in shape, but the
ensemble-average density is spherically symmetric. The
agreement between the simulations and our theory shows
that the simulated fluctuating structure is well described by
our equations, and that a theory for the ensemble averaged
density profile is meaningful. Of course, a real polymer
may have more complex structure, and disagree with our
predictions, indeed we show this below, but our simple
model works surprisingly well.

A hyperbranched polymer of given mass can have differ-
ent structures, and a distribution of sizes. In Ref. [15], we
show that this distribution is not too broad, and becomes
relatively narrower as the polymer becomes larger. Our
theory predicts the density profile averaged over the en-
semble of possible branching structures for a given mass,
and so we obtain an average r2

g at each mass.
Kainthan et al. reported triple-detection SEC of hyper-

branched polyglycerols [3]. Ioan et al. report similar analy-
sis for glycogen [2]. We solved Eq. (5) for the simplest case
of � � 1, taking s as the unit of length, for values of �0

varying between 6	 10�2 and 103. We then varied s2 and
�n, the average number of monomers in each simple unit, to
fit each experiment to each model calculation. For all five
experimental data sets, the best fit was for �0 
 s�3. This
is the density at which simple units overlap. In the fit to
Monte Carlo simulations in Fig. 1 we found �0 
 0:9s�3.
The experimental data are shown in Fig. 2 as rg=s vs ln�N�,
where N is the number of units added, N � M=� �nM0�,
where M0 is the mass of a monomer. All the experimental
data, covering about two decades in mass overall (before
scaling), lie on the same line, predicted by our model. The
values of the parameters are shown in Table I. Other
samples described by Kainthan et al. and by Ioan et al.
show the power law growth r3

g �M. This behavior is also
seen in our calculations at higher degrees of polymeriza-
tion (see Fig. 1).

The number of monomers in each simple unit from the
fit varies from�6	 103 to 105. The actual linear chains in
glycogen are made up of about 20 glucose units [18], but
our results imply that the scaling shown in Fig. 2 is due to
the assembly of much larger units. Such units, called �
particles, have been observed in electron microscopy of

glycogen [23,24]. Given the simplicity of our model, the
emergence of units with sizes of the correct order of
magnitude is striking. Our fits suggest diameters ( 
 2s)
of between 20 and 50 nm (Table I), the observed � parti-
cles are around 20 to 40 nm in diameter.

Takeda et al. report SEC experiments on fluorescently
labeled waxy (high AP) rice starch [25]. These data and the
calibration used in Ref. [14] give the number and weight
distributions with hydrodynamic volume [4]. The use of
the calibration in [14] gives reasonable and consistent
estimates of hydrodynamic volume. We take Takeda’s
number distribution, and combine it with our model’s
prediction for the mass of a polymer of given size, to obtain
the mass distribution across hydrodynamic volumes. We
can then test our model by comparing this mass distribu-
tion to the experimental one. We take the length of the
simple chains from experimental debranched distributions
to be fixed at 25 [25], the length of a monomer to have the
crystallographic value 4.5 Å, and choose � � 5. The values
of �0 � 6:6	 10�3 nm�3 and � � 4:5 nm are chosen to
be by comparison to Monte Carlo simulations [15]. The
value of �0 is only slightly lower than the one found above
for polyglycerol and glycogen, about 0:64��3. We have
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FIG. 2 (color online). Data for glycogen and polyglycerol
plotted as rg=s against ln�N� where N is the number of simple
units. Each set of experimental data independently is best fit by a
value of �0 close to 1=s3. The model’s prediction for this choice
of �0 is shown as a solid line.

TABLE I. Parameters that give the best fit of the model to the
five sets of experimental data shown in Fig. 2. These values of s
were obtained assuming K � 6 [see Eq. (3)]. A lower K implies
a higher s for the same fit.

Polymer �n s (nm)

Polyglycerol HPG-7 8540 9.37
Glycogen G 92 800 25.2
Glycogen G1 35 400 18.5
Glycogen G5 10 500 13.5
Glycogen G8 6170 11.2
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scaled our predicted weight distribution in Fig. 3 to match
the refractive index signal. Our model and the experiment
show the same (roughly power law) growth in weight
distribution over about a decade in hydrodynamic volume,
then they deviate. We argue that this is because the enzy-
matic processes in the biosynthesis are such that the
branching structure in AP ceases to be quasirandom at
these larger sizes, because the monomers would otherwise
be too closely packed.

Our model is a very simple one, and predicts only the
average radial density profile of a complex structure. It
makes no attempt to predict distributions of size and ne-
glects many effects on polymer structure. Yet it agrees with
simulations, and more importantly with experimental data
on three separate polymers. The agreement with the poly-
glycerol and glycogen data is striking, and the prediction
by this fit of the existence of � particles, observed in
electron microscopy, is strong evidence that our simple
model captures the scaling of size with mass. Still, many
fascinating issues remain to be explored: for example, we
have no simple explanation for the rg � ln�M� scaling
which we have shown is found in experimental data as
well as in our model calculations. We leave this, the
exploration of more realistic interactions, and the combi-
nation of our work with that in Refs. [13,16,17], to future
work.
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FIG. 3. Comparison of our predicted weight distribution for
amylopectin to that reported by Takeda et al. from SEC mea-
surements [25]. Our predicted distribution is calculated from the
number distribution given by Takeda et al..
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