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In a previous paper [S. Ghosal, Phys. Rev. E 74, 041901 (2006)] a hydrodynamic model for determining
the electrophoretic speed of a polyelectrolyte through an axially symmetric slowly varying nanopore was
presented in the limit of a vanishingly small Debye length. Here the case of a finite Debye layer thickness
is considered while restricting the pore geometry to that of a cylinder of length much larger than the
diameter. Further, the possibility of a uniform surface charge on the walls of the nanopore is taken into
account. It is thereby shown that the calculated transit times are consistent with recent measurements in
silicon nanopores.
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The translocation of polymers across nanometer scale
apertures in cell membranes is a common phenomenon in
biological systems [1]. If the polymer carries a charge, an
applied electric potential can drive the translocation. The
change in electrical conductance of a single nanopore as a
polymer transits the pore can be reliably detected and used
to characterize the polymer [2]. A number of experimental
studies [3–6] as well as a few theoretical ones [7,8] on the
electrically driven translocation of polymers across nano-
pores have appeared recently. Interest in the phenomenon
is to a large extent motivated by the possibility of refining it
to the point where the base sequence of a DNA strand can
be read with single base resolution as the DNA transits the
pore [9]. This would provide a sequencing method that is
faster and cheaper than existing ones by many orders of
magnitude. A technological challenge is the trade off
between noise and resolution. In typical experiments with
solid state nanopores a single base pair transits the pore in
about �10�8 sec—much too short to be resolved. On the
other hand, the voltage across the pore cannot be suffi-
ciently reduced to slow down the DNA because then the
change in current would not be detectable above the noise.
A theoretical analysis of the problem to determine how the
translocation speed depends on the controllable parameters
is therefore of value in guiding the experimental work.

In an earlier paper [7] a hydrodynamic model was
proposed for describing the process of electrically driven
translocation across the nanopore. The speed of transloca-
tion is determined by a balance of electrical and viscous
forces arising from within the pore with proper accounting
for the co- and counterions in the electrolyte. The under-
lying physics is not unlike that of electrophoresis of small
charged particles in an applied electric field except that
here the proximity of the pore walls plays an important
role. The translocation speed was explicitly calculated for
cylindrically symmetric pores by assuming an infinitely
thin Debye layer and slowly varying pore radius. The
calculated translocation speed was shown to be in close
agreement with experimental measurements [6] in solid
state nanopores. The assumption of infinitely thin Debye

layers was justified because of the high concentration of
salt (1M KCl) in the electrolyte used in the experimental
work. More recently Smeets et al. [10] have published
experimental data on a solid state nanopore for an electro-
lyte with KCl concentration varying from 50 mM to 1:0M.
Remarkably, it was found that the most probable trans-
location time either did not vary at all with salt concentra-
tion or the variation was too small to be detected. In this
Letter the translocation speed is calculated based on the
mechanism proposed in [7] but allowing for a finite Debye
layer thickness while restricting the geometry to a long
cylindrical pore. The objective is to determine whether the
proposed hydrodynamic model is consistent with the ob-
served experimental dependence of the translocation speed
on salt concentration.

Figure 1 shows the geometry for our simplified calcu-
lation. The pore shape in the experiment actually resembles
a hyperboloid with a smallest diameter of 10.2 nm. Smeets
et al. [10] report that the bulk conductance of the pore is
equivalent to that of a cylindrical nanopore of identical
diameter and length L � 34 nm. For the purpose of com-
paring our calculation with experiments, we will consider a
cylindrical pore with these dimensions. Moreover, we will
assume the flow field to be uniform in the axial direction,
an assumption that is strictly valid only for an infinitely
long cylinder. Let us model the part of the polyelectrolyte
inside the pore by a straight rigid cylindrical rod (of radius
a � 1 nm) that is coaxial with the cylindrical pore (of
radius R � 5:1 nm) and translocating at a velocity v in
the axial direction (x). Such a model is reasonable since the
persistence length of double stranded DNA (dsDNA) is
about 50 nm. In the absence of an applied pressure gradient
(the inlet and outlet reservoirs are both at atmospheric
pressure), the flow velocity u � x̂u�r� in the region be-
tween the polyelectrolyte and the pore wall satisfies Stokes
equation (the Reynolds number Re� 10�4):

 �r2u� x̂�e�r�E0 � 0; (1)

where � is the dynamic viscosity of the electrolyte, E0 is
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the applied electric field in the pore, and �e�r� is the
electric charge distribution due to the co and counterions
as a function of the distance from the axis (r). On account
of axial symmetry of the cylindrical geometry considered,
the movement of ions due to the current or bulk motion
does not change the electric charge density in the diffuse
layer. Thus, �e�r� is both the equilibrium charge density
(E0 � v � 0) as well as the charge density after a potential
difference is applied across the cylinder (E0 and v � 0).
Poisson’s law relates �e to the electric potential �:

 �r2� � ��e; (2)

where � is the dielectric constant of the electrolyte.
Equations (1) and (2) must be solved with boundary con-
ditions

 ��r � a� � �p (3)

 ��r � R� � �w; (4)

where �p and �w are the � potentials at the surface of the
polyelectrolyte and the wall, respectively. The classical
condition of no- slip at the walls implies that

 u�r � a� � v (5)

 u�r � R� � 0: (6)

Equations (1) and (2) imply that the function f �
u� �E0�=� satisfies the equation

 r2f �
1

r
d
dr

�
r
df
dr

�
� 0 (7)

with boundary conditions

 f�a� � v�
�E0�p
�

 f�R� � �
�E0�w
�

: (9)

The equation for f is readily integrated, giving us the flow
profile u�r�:
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�
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�p

�

�
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�
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�p

�
ln�r=R�
ln�a=R�

; (10)

where ue � �E0�p=� is a characteristic electrophoretic
velocity. The potential � is determined from the Poisson-
Boltzmann equation which is obtained on substituting the
Boltzmann distribution on the right hand side of Eq. (2):

 �r2� � �
X
k

ezkn
�1�
k exp

�
�
zke�
kBT

�
: (11)

Here zk is the valence and n1k the far field concentration of
ion species k, e is the magnitude of the electronic charge,
kB is the Boltzmann constant, and T the absolute tempera-
ture of the electrolyte. However, for the purpose of deter-
mining the translocation speed v, an explicit solution for�
will not be needed. The required velocity is obtained from
the condition that the total force on the section of the
polymer inside the pore is zero:

 Fe � Fv � 0; (12)

where Fe and Fv are the electric and viscous forces per unit
length of the polymer. If � is the charge per unit length of
the polymer then

 Fe � �E0 � �2�a�E0�0�a� (13)

by Gauss’s law. The viscous force Fv � 2�a�u0�a� can be
calculated using (10):

 

Fv
2��ue

� a
�0�a�
�p
�
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�
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�p

�
1

ln�a=R�
: (14)

On substituting Eqs. (13) and (14) into (12) we get

 v � ue

�
1�

�w
�p

�
�
�E0�p
�
�
�E0�w
�

: (15)

Equation (15) for the translocation speed is the main result
of this Letter. Surprisingly, Eq. (15) is identical to the result
we would have obtained if we had made the assumption of
infinitely thin Debye layers as we did in [7]. To see this,
observe that Eq. (15) together with the Helmholtz-
Smoluchowski slip boundary condition would imply a
uniform flow u�r� � ���wE0=�, in the fluid which would
satisfy the condition of zero force on the polyelectrolyte
considered together with its Debye layer. Equation (15)
also follows directly (with �w � 0) from Eq. (12) for the
translocation speed in [7] if one assumes a uniform cylin-
der for the pore shape. In addition, it has the following very
simple interpretation in the limit of thin Debye layers: the
part ��E0�w=� is the electro-osmotic flow through the
pore generated by the applied field and �E0�p=� is
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FIG. 1. Geometry of the pore region.
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simply the electrophoretic speed of an object of arbitrary
shape in a reference frame fixed to the moving fluid in the
nanopore [11].

Equation (15) will now be compared to experimental
data due to Smeets et al. referenced earlier [10]. In the
Debye-Huckel approximation the � potential of the poly-
electrolyte �p is related to its linear charge density �
through the formula (see [7] )

 �p �
��D
2�a�

K0�a=�D�
K1�a=�D�

; (16)

where �D is the Debye length and Kn are the modified
Bessel functions of order n. For a univalent salt like KCl
the Debye length (in nm) is given by [12] �D � 0:303=

���
c
p

,
where c is the Molar concentration of the salt. The experi-
mental data are in the range �0:05–1:0�M so that �D ranges
from 0.30 nm to 1.36 nm. Since R � 5:1 nm and a �
1:0 nm, there is no significant overlap between the
Debye layers at the polyelectrolyte and the wall for
concentrations above 0:05M, though for even smaller con-
centrations such effects may be expected. Thus, it is rea-
sonable to use the expression (16) which is strictly true
only for an isolated infinite rigid rod in an unbounded
electrolyte. The dielectric constant �=�0 and dynamic vis-
cosity � � 8:91� 10�4 Pa s for the electrolyte are taken
as those of water. For the linear charge density on the DNA
we take 5.9 electronic charges per nm reduced by the
Manning factor of 4.2, thus � � �2:25� 10�10 C=m.
This assumption is supported by recent force measurement
experiments [13] that show that polyelectrolyte charge is
reduced by the classical Manning factor when the DNA is
inside the pore over a wide range of salt concentrations.
The electric field intensity is obtained by assuming that the
entire voltage drop of 120 mVoccurs over the length of the
equivalent cylinder which is L � 34 nm, thus, E0 �
�3:53� 106 V=m. The � potential at the SiO2 wall may
be obtained from the expression

 �w � a0 � a1log10c; (17)

where c is the molar concentration of K� ions. The func-
tional form of the dependence on concentration follows in
the low counterion concentration limit from the nonlinear
Gouy-Chapman model of the Debye layer in case of sym-
metric electrolytes. However, it has been shown to provide
a good empirical fit to experimental data for counterion
concentrations up to 1:0M [14]. For KCl on silica a0 � 0
and a1 � �30 mV.

The translocation velocity v is calculated from Eq. (15)
for a range of concentrations from 0:01M to 1:01M. The
corresponding translocation time for a Lp � 16:5 �m long
DNA t � Lp=v is shown as the solid line in Fig. 2. A
notable feature is the lack of sensitivity of the translocation
time to the salt concentration: it changes by at most a factor
of 3 when the salt concentration ranges over 2 orders of
magnitude. Taking into account the considerable scatter in

the experimental data and the various approximations
made in the theory, the agreement between the two is quite
reasonable, pointing to the adequacy of the underlying
hydrodynamic model. The existence of a maximum in
the translocation time at a concentration of about 0:1M
KCl seems to be supported by the data, although one
cannot be completely certain of this on account of the
uncertainty in the data. The principal uncertainties in-
volved in applying the hydrodynamic model to nanopores
were discussed in [7]. Those same considerations apply to
the current calculations as well and need not be repeated
here. It should also be kept in mind that although the
motion of the polymer is treated as a unidirectional trans-
lation at constant speed, the actual translocation takes
place via a drift diffusion process as described by
Lubensky and Nelson [8]. Here it is assumed, as is done
in the classical theory of Brownian motion of particles, that
the mean part of the motion of the polymer may be ob-
tained through the solution of a classical hydrodynamics
problem that ignores the fluctuating forces. The hydro-
dynamic model or indeed any model that localizes the
entire resistive force at the pore region would predict a
translocation speed that is independent of polymer length.
This is valid only for polymers that are not too long (see
[7] ). For very long polymers the resistive force has an
entropic part as discussed by various authors [15–17].
Störm et al. [18] have suggested that the viscous drag on
the randomly coiled part of the polymer lying outside the
pore could also be significant.

DNA translocation experiments that have been per-
formed to date can be divided into two classes: those that
use a natural protein nanopore (�-hemolysin) on a lipid
membrane [2,3] and those that use a mechanical nanopore
on a solid substrate made by specialized techniques [5,19].
Although the principle is similar, these two types of nano-
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FIG. 2. Translocation times for 16:5 �m long dsDNA through
a 10.2 nm diameter solid state nanopore. Solid line is calculated
from Eqs. (15)–(17); the symbols are replotted from the data
presented in Fig. 4(b) (inset) of Smeets et al. [10].
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pores differ with respect to some important details. One
essential physical difference is that the narrowest part of
the �-hemolysin pore is about 1.5–2.0 nm in diameter so
that only single stranded DNA or RNA is able to pass
through it. When the pore is blockaded by such a single
strand the blockade is almost complete in that very few
ions and probably none of the water is able to pass through
the blocked pore. Although solid state pores can be made
with pore sizes approaching 1 nm, most of the experiments
to date have been done with 5–10 nm diameter pores which
can be made in a more reliable and reproducible manner.
These larger diameter pores admit both single and double
stranded DNA, and furthermore dsDNA can enter the pore
in a folded fashion, notwithstanding the relative rigidity of
these polymers [6]. The main observable difference in
terms of translocations across the two kinds of pores is
that the polymer passes through the solid state pores about
2 orders of magnitude faster than it does through
�-hemolysin pores. It is important to stress that the analy-
sis presented here applies to only the 5–10 nm solid state
nanopores. Although a similar hydrodynamic model could
be constructed to model the viscous force arising out of the
water in the vestibular part of the �-hemolysin pore, such a
model must of necessity differ from the current one in the
details of its formulation. Furthermore, the applicability of
the continuum equations for electrostatics and hydrody-
namics would be questionable to a much greater degree
than in the analysis presented in this Letter. It has been
suggested that in order to explain the much slower trans-
location speed in protein pores, something other than
hydrodynamics is needed: perhaps an atomic level pore-
polymer interaction, an electrostatic self-energy barrier
[20], or the energy cost associated with stripping hydration
layers from the polymer as it enters the pore. The result
derived in this Letter neither supports nor refutes the
validity of these alternate mechanisms for the 1.5–
2.0 nm protein pores. It does, however, show that for the
5–10 nm solid state pores hydrodynamic resistance can
explain the experimental data in the absence of any of the
other mechanisms.

In conclusion, the hydrodynamic model introduced in
[7] to calculate the average transition time of a polyelec-
trolyte across a nanopore under an applied electric field
was extended to treat the case of a finite Debye layer
thickness, though the geometry was restricted to the simple
case of a cylindrical pore. The predicted translocation
times are found to be consistent with available experimen-
tal data to within the uncertainties inherent in the experi-
ment and the theory. As a final remark, it is worth noting a
few practical implications of the simple model presented
here in relation to the problem of how one needs to tune the
available parameters to make the translocation time as
large as possible. First, Fig. 2 shows that an optimal salt

concentration exists for which the translocation speed is a
maximum, though the gain here is no more than a factor of
3. A better strategy is suggested by Eq. (15) which shows
that v vanishes if �w � �p. Physically this essentially
amounts to balancing the electrophoretic migration of the
DNA against an opposing electro-osmotic flow generated
at the wall. In principle, this could be achieved by using an
alternate substrate, a coating on the existing substrate, or a
physical or chemical treatment of it that alters its � poten-
tial. The object is to select a substrate such that �w � �p
and then ‘‘fine-tune’’ the salt concentration to achieve a
closer match. As an example, poly(methyl methacrylate)
(PMMA) is a commonly used substrate in microfluidic
application for which a0 � �4:06 mV and a1 �
�12:57 mV [21]. Using these values in (17) and plotting
the result together with Eq. (16), it is easily seen that the
two curves intersect at a salt concentration of about 0:6M.
Operating near this molarity with a PMMA substrate
should result in significantly slower translocations.
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