PRL 98, 237802 (2007)

PHYSICAL REVIEW LETTERS

week ending
8 JUNE 2007

Charged Particles on Surfaces: Coexistence of Dilute Phases and Periodic Structures at Interfaces
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We consider a mixture of two immiscible oppositely charged molecules strongly adsorbed to an
interface, with a neutral nonselective molecular background. We determine the coexistence between a
high density ionic periodic phase and a dilute isotropic ionic phase. We use a strong segregation approach
for the periodic phase and determine the one-loop free energy for the dilute phase. Lamellar and
hexagonal patterns are calculated for different charge stoichiometries of the mixture. Molecular dynamics
simulations exhibit the predicted phase behavior. The periodic length scale of the solid phase is found to
scale as £/(Ig>/?), where o is the effective charge density, [, is the Bjerrum length, and & is the cohesive

energy.
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Phase separation phenomena and pattern formation at
surfaces [1,2] are areas of great scientific interest. Recent
studies have shown that mixtures of immiscible oppositely
charged molecules can form periodic nanostructures [3—
5]. The competition of short range and long range inter-
actions leads to the formation of periodic structures in a
multitude of systems, including lipid Langmuir monolayer
mixtures [6—8], two-dimensional (2D) uniaxial ferromag-
nets [9], reaction controlled phase segregating mixtures
[10], two-dimensional electron gases in metal-oxide-
semiconductor field-effect transistors [11], and responsive
gels [12]. We explore here the case of patterns formed by
charged molecules adsorbed onto biological membranes
and other neutral surfaces, including liquid interfaces such
as emulsions when cationic and anionic macromolecules
are adsorbed onto the interface. Oppositely charged com-
ponents adsorbed onto interfaces may form ionic domains
reminiscent of biological rafts. The competition between
electrostatics and immiscibility may give rise to a periodic
solid phase that coexists with a dilute charged gas at the
interface. In this Letter, we determine the boundary of the
coexistence region between the dilute gas and the periodic
solid phase for varying degrees of chemical incompatibil-
ity and stoichiometric ratios of the adsorbed molecules.

We use analytic techniques and molecular dynamics
simulations of a coarse-grained model as shown in
Fig. 1(a). In the model, we do not wish to study the
adsorption or desorption to the interface but the phase
behavior assuming a constant interfacial area. We assume
that the monolayer surface is in equilibrium and that
fluctuations perpendicular to the interface are negligible.
First, we explore the phase behavior of this model analyti-
cally when the ionic domains are well-segregated periodic
nanostructures and the dilute phase is treated as a gas of
charges. We then describe the results of molecular dynam-
ics simulations for intermediate segregation regimes.

We consider the coexistence of two possible phases at
low temperature. One phase consists of a dense, patterned
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solid formed by the oppositely charged components. Its
free energy is computed by assuming the formation of
regions of constant particle and charge density. The second
phase is homogenous and has a low density of charged
particles. It is treated as a two-dimensional charged gas in a
homogenous background that displays nonselective inter-
actions with the charged components. The free energy of
the low density homogenous gas of charged particles is
calculated using linear response theory by means of the
one-loop approximation or random phase approximation
(RPA) [13] at the interface. The phase diagram is plotted in
Fig. 1.

The periodicity of the domains in the solid phase is
lamellar for nearly symmetric stoichiometric ratios, while,
for asymmetric ratios, nearly circular domains are arranged
in a hexagonal lattice. The average absolute value of the
charge density is ¢y = f, ¢y + f_|_|, where f. repre-
sents the area fraction of the components and . their
charge density. The free energy, per area A with periodicity
L, has the form
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The Bjerrum length is Iz = e?/4mekyT, kg is the
Boltzmann constant, 7 is the temperature, € is the dielec-
tric permittivity of the medium, and vy is the line tension
between domains. The coefficients s; and s, are dimen-
sionless quantities that depend on the specific shape of the
domains, as explicitly defined in Ref. [3]. s; is the ratio of
the interface length within a unit cell to the size of the cell.
s, is the integral of the dimensionless Coulombic potential
over the whole space, averaged over a unit cell.
Minimizing the free energy with respect to the size L, we
obtain a characteristic length L, = (s,/s5)"/?L,, with
Lo =[v/(Iz¢*)]"/?, and the free energy density is
2(s15,) 2 fo /L2, where fo, = (ylgyp®)'/? [3,14]. The net
free energy of the solid phase also includes the cohesive
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FIG. 1 (color online). (a) Schematic of neutral and charged
components strongly adsorbed to an interface, such as an emul-
sion or the surface of a bilayer. The charged components
segregate into a periodic solid phase with line tension y between
domains, with a homogenous background. (b) Phase diagram of
the mixture. Location of solid-gas coexistence boundaries in the
p — T plane are shown for several different values of the
Bjerrum length [z/o. Increasing lgz/o requires higher values
of short range interactions &/T for phase coexistence. The figure
refers to the case of equal charge density z,/z_ = 1, which
forms a lamellar microphase, with constant density pyiq-

energy that arises from segregation of the charged mole-
cules from the neutral background. In our description of
the solid phase, at low temperatures, we assume a constant
density given by the hexagonal close packing (hcp) of
spherical molecules of radius o, corresponding to a density
Peotia = 1/+/30%. The effective cohesive energy per unit
area can be written in terms of &, which corresponds to the

net interaction between components, with 6 contacts be-
tween neighbors. The line tension is @. Inclusion of the

cohesive energy leads the final result for the solid phase:

W = —3epgona T 2(s152)"2fo/L3. )

The free energy of the gas phase is obtained from the
partition function [13,15]
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where A = U/ + p;'8,;. Here p; represents the density
of the ith component, p; represents the Fourier transform
of the component densities, and k is the wave vector. Z,,
includes the k = 0 and self-energy terms. U}/ is the sum of
the interaction energies, consisting of the short range in-
teractions due to the excluded volume and hydrophobic
interaction as well as the long range contributions due to
the electrostatic energy. The electrostatic contribution to
the internal energy matrix uses the 2D Fourier transform of
the screened Coulomb interaction Eg = 2mz;z;l3(k* +
k*)~1/2 where « is the inverse screening length. The free
energy is then
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where U] includes the short range excluded volume of the
components. The electrostatic contribution vanishes due to
charge neutrality. The second term is the entropic term.
The third term is the electrostatic contribution due to
density fluctuations, calculated by integrating over pos-
sible values of k from O to 277/a, where a is the molecular
size. The presence of salt does not change the periodicity
significantly up to when the screening length is of the order
of the domain size when the periodic phase decomposes
into two macroscopically segregated phases of charges [3].
The electrostatic contribution, considering the limit of no
screening due to ions in the surrounding solution (k — 0),
is

2 aky,
Fq :L 21 ln(l+ﬁ)+ﬂ'ki2n_lk4 In 1+2_77' ’
kgT 4w a? a 2" ak?

in

4

where k2 = 27lz(p, 75 + piz%), the internal screening
due to ions in the plane. Upon considering the charge
neutrality constraint z, p, = z_p_, the total free energy
per unit area of the gas phase, in terms of p (p = p; +
p_), is then

F 2
Faas _ P (PN P (P V0[P
AkgT o \«ae B \Be 2 \a

2 2 F
+ 2PNy P e (5)
2 \8 aB kT
where « = 1 — (z,/z_)and 8 = 1 — (z_/z4). The virial
terms are v;; = — [ e~ Vs/ksT — 1, where U;; is a hard core

potential from 0 <r < ¢ and a classic 6—12 Lennard-
Jones potential from o <r <2.50.

The phase coexistence of the periodic solid and the
dilute gas is obtained using the common tangent rule.
Assuming a fixed solid density, the coexistence equation is
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The boundary of the coexistence region for low values of
the gas phase density is shown in Fig. 1(b) for equal
stoichiometric ratios z,/z_ = 1. The coexistence lines
depend on the relative strengths of the Coulomb interaction
Iz/o and on the cohesive or immiscibility parameter &.
With increasing I/ o, phase coexistence occurs at lower
temperatures. We do not calculate for higher densities,
when nonlinear corrections including short range correla-
tions and ion association are necessary, to correctly de-
scribe the gas phase [16,17].

Intermediate temperatures are explored with molecular
dynamics simulations. Coarse-grained simulations have
indicated patterns on the surface of monolayers, bilayers,
etc. [18—20]. In this model, the competition between the
electrostatics and the short range interactions are both
essential components. We consider a neutral and nonselec-
tive homogenous background and choose to model only the
charged components. In this manner, large regions of
coexistence can be explored, exactly incorporating the
electrostatics. The van der Waals interactions are described
by a classic 6—12 Lennard-Jones potential

o - fe o

where the potential is cut at a radius r, = 2.50" and un-
shifted (C = 0) for similarly charged molecules, and the
potential is shifted (C =1) and cut at r, =290 for
oppositely charged molecules, where o is an effective
molecular radius. The depth of the potential well & entails
a net immiscibility of magnitude & between oppositely
charged species.

We use the ESPRESSO simulation package [21,22] to
perform NVT simulations, using a Langevin thermostat.
This simulation ensemble matches our analytic work,
which assumes constant particle density. The model sys-
tems are composed, in the symmetric case, of a mix of
N, = 1000 positively charged and N_ = 1000 negatively
charged units in a simulation box of size D3, with D =
660. For the asymmetric case, we used N; = 900 and
N;_ =300 (multivalent units with a charge of —3). The
molecules are confined to a plane perpendicular to the Z
axis, with periodic boundary conditions in the X and Y
directions. We explore regions of the phase diagram at
surface densities of p = (N, + N_)mwao?/4D* = 0.36.
The potential between charges is a full Coulomb potential
Uc = 13T q,q,/r calculated using the electrostatic layer
correction method [23], which is a 2D correction to P;M
Ewald summation [24]. Late-time snapshots are shown in
Fig. 2.

To compare the strong segregation theoretical results
with the simulation results, we identify the domain width
with L = [y/(Iz*)]"/? ~ [&/(Izp*/*)]'/2. Here we aban-
don the assumption of a solid phase density fixed by the

molecular radius and consider a line tension 7y that scales
with the particle density, proportional to the charge density,
as ¢'/2. This assumes a homogenous swelling of the solid
phase density but does not account for vacancy adsorption
at interfaces [25,26]. The pattern formation is found to be
independent on finite size effects; the density of the solid as
well as the periodicity of the solid phase are not signifi-
cantly changed. The transition appears at the same ratios of
short range interactions and strength of the electrostatics.

At small values of & or low Bjerrum lengths (high
temperature), positive and negative regions develop on
the surface, and, as the temperature decreases, the domains
increase in size. The individual molecular components
exhibit hcp packing, with density fluctuations dependent
on the temperature. For asymmetric charge ratios z, /z_ =
%, we show in Fig. 2(a) the formation of a hexagonally
patterned “island” at p = 0.10. For larger densities, as in
Fig. 2(b), the solid phase occupies a larger fraction of the
space but exhibits more clearly the ordering.

As shown in Figs. 2(c) and 2(d), for symmetric charge
ratios z, /z_ = 1, the microstructure is lamellar. We ob-
serve phase separation between solid patterned and gas
phases. At higher values [Fig. 2(d)], the interfaces are
much sharper and exhibit smaller interfacial fluctuations.
The orientation of the lamella is perpendicular to the inter-
face; the alignment may be due to the minimization of the
local electrostatic energy.

Figures 2(e) and 2(f) show the transition from a solid to
a solid-gas coexistence phase for symmetric charge ratios
but for weaker electrostatic interactions. At low values of
the cohesive energy &, the system shows the lamellar
patterning but possesses large voids between the charged
domains, effectively reducing the line tension between
domains. Upon further increase of &, the coexistence re-

FIG. 2 (color online). Simulation snapshots for systems with
charge ratios (a),(b) z./z- =1/3 and (¢)-(f) z,/z- = 1.
Frames (a) and (b) illustrate hexagonal order for different
densities p, = 0.10 and p;, = 0.36. Frames (c) and (d) show
the effect of increased immiscibility e, = 3.4kpT, ¢, = 3.7kpT,
for a fixed Bjerrum length [z /o = 0.5. Frames (e) and (f) show
the transition from a homogenous microphase to a phase-
segregated state for &, = 2.6kzT, &7 = 2.8kgT for lg/o =0.1.
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FIG. 3. The location of the peak k* in the structure factor S(k)
as a function of &/(Iz/?), over a range of Iz/o ~ 0.01-1. The
linear fit shows agreement with the scaling predicted by strong
segregation theory of power —0.5.

gion is reached, and the neutral regions segregate to form
their own phase, as shown in Fig. 2(f). The lower values of
the Bjerrum length in these cases produce larger lamellar
sizes, compared with those of Figs. 2(c) and 2(d).

The 2D Fourier transform of the correlation function in
the phase-segregated state {p,p_;) displays a peak at
values k* corresponding to the inverse lamellar spacing
in the direction perpendicular to the lamellas. The peak
should scale as k* ~ [&/(Iz*/*)]7'/2. In our simulations,
over a range of lz/o ~ 0.01-1, the peak scaling fits
through a line of slope —0.47 = 0.02 when plotted against
the group &/(Iz/?), as shown in Fig. 3.

By use of analytic techniques, a combination of RPA and
strong segregation theory, in addition to molecular dynam-
ics simulations, we demonstrate the possibility of coexis-
tence of periodic ionic domains with a low charge density
homogenous phase. Simulations show that, with a simple
rescaling of the line tension 7y, with charge density ¢'/2,
low temperature results can be extrapolated to intermediate
temperature regimes. The competition between electro-
static and van der Waals interactions at the interface pro-
vides a guideline to generate well-controlled, self-
assembled surface patterns. Phase segregation phenomena
on surfaces and interfaces exhibit rich behavior. Ionic
domains may be crucial to increase reaction rates among
adsorbed biomolecules at liquid interfaces, a useful tool in
biotechnology [27,28].
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