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We establish a one-to-one correspondence between the Young tableaux classifying the total spin
representations of N spins and the exact eigenstates of the Haldane-Shastry model for a chain with N sites
classified by the total spins and the fractionally spaced single-particle momenta of the spinons.
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Integrable models [1,2] have always played a special
role in our understanding of interacting many-particle
systems in one dimension. While it is clearly impossible
to realize an integrable model experimentally, it is clear
that many concepts and mechanisms discovered through
the study of integrable systems are directly or indirectly
relevant to a substantial body of experimental data. An
infinite set of conserved quantities renders many integrable
models amenable to exact solution through one or several
variations of the Bethe ansatz method and hence allows us
to get a grasp on the nontrivial physical concepts involved.
The most prominent among these concepts is probably the
fractional quantization of spin in antiferromagnetic spin
1=2 chains. Faddeev and Takhtajan [3] discovered in 1981
that the elementary excitations (now called spinons) of the
spin 1=2 Heisenberg chain solved by Bethe [4] in 1931
carry spin 1=2 while the Hilbert space for the spin chain is
spanned by spin flips, which carry spin 1. The fractional
quantization of spin in spin chains is conceptually very
similar to the fractional quantization of charge in quantized
Hall liquids [5,6]. In the case of the Haldane-Shastry model
(HSM) [7–11], which we will elaborate on below, the
analogy even extends to the explicit wave functions for
the ground states and the spinon or quasihole excitations of
the spin chain and the Hall liquid, respectively.

The discovery of the spinon through the Bethe ansatz
(BA) solution illustrates both the importance of integrable
models and BA techniques as well as the practical limita-
tions, as it took 50 years to read off as elementary a
property as the spin of an excitation in a known and estab-
lished exact solution to the problem. The BA is not a very
practical method to calculate observable quantities, both
because the number of integrable models is limited and
because it is often exceedingly difficult to extract physical
quantities like correlation or response functions from the
exact solutions. One of the reasons underlying these prac-
tical limitations may be that the BA solutions are given as
distributions of pseudomomenta, in which spinon excita-
tions appear as defects. Spinons hence play the role of
defects or solitons in the solutions of the BA equations, just
as they and the quasiparticles in quantized Hall liquids are
often viewed as solitons or collective excitations in states
constructed of spin flips or electrons, respectively. In many
regards, however, spinons can and should be interpreted as

particles, which requires solutions labeled in terms of
spinon quantum numbers. Such solutions would, in prin-
ciple, allow for the development of perturbative methods in
the spinon fields directly.

With regard to this perspective, there is encouragement
and there are problems. The encouraging news is that the
HSM provides us with an ideal starting point for any such
perturbative expansion, since the spinons in this model are
free [12–14] in the sense that they interact only through
their half-Fermi statistics. The half-Fermi statistics yields
nontrivial state counting rules [15–17] and fractional mo-
mentum spacings [18]. It is still far from simple to con-
struct the spinon Hilbert space, as it cannot be decomposed
into a product space of single-particle states, known as
Fock space in the familiar cases of fermions or bosons.
In this Letter, we propose what we believe to be the
simplest construction.

The main problem with the development of perturbative
methods in terms of spinon fields is that the matrix ele-
ments of local spin operators S� on sites � of the chain
between states with different numbers of free spinons, i.e.,
eigenstates of the HSM, are required. At present, only very
few of these matrix elements are known, and the exact
expressions for these elements for finite chains appear
rather complicated [19–21]. These expressions, however,
greatly simplify in the thermodynamic limit, and there is
hope that a method to obtain them directly in this limit can
be developed.

Let us now turn to the Hilbert space representation for
spinons in an SU(2) or, in general, SU�n� spin chain. The
nontrivial feature is that the single-spinon quantum num-
bers depend on the occupations of all the other single-
spinon states. These quantum numbers are the spins and
the single-particle momenta of the spinons. It would proba-
bly be exceedingly difficult to obtain them if the Haldane-
Shastry model would not provide us with a framework.
Since the spinons in this model are free, the problem of
finding the equivalent of a Fock space representation for
spinons reduces to finding a convenient representation of
the eigenstates of this model in terms of their spinon
content. In other words, we set out to find a general set
of rules to determine the allowed sequences of single-
spinon momenta p1; . . . ; pL as well as the allowed repre-
sentations for the total spin of the states such that the
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eigenstates of the HSM have momenta and energies

 p � p0 �
XL
i�1

pi; E � E0 �
XL
i�1

��pi�; (1)

where p0 and E0 denote the ground state momentum and
energy, respectively, and ��p� a single-spinon dispersion
irrelevant to the general purpose. We begin with a brief
review of the most relevant features of the model.

The HSM is most conveniently formulated by embed-
ding the one-dimensional chain with periodic boundary
conditions into the complex plane by mapping it onto the
unit circle with the spins located at complex positions
�� � exp�i 2�

N ��, where N denotes the number of sites
and � � 1; . . . ; N. The Hamiltonian is given by

 HHS �
2�2

N2

XN
�<�

P��
j�� � ��j2

; (2)

where P�� permutes the spins on sites � and �. For the
SU(2) model, (2) takes the more familiar form if we
substitute P�� � 2S� � S� �

1
2 . The model is integrable

[22] and possesses a Yangian symmetry algebra generated
by the total spin S and the rapidity operator �, which both
commute with the Hamiltonian but do not commute mu-
tually [11].

The ground state (N � nM, M integer) for the SU(2)
model (n � 2) is given by

 j�0i � PGj�
N
SDi; j�N

SDi �
Y
q2I

cyq"c
y
q#j0i; (3)

where the Gutzwiller projector PG eliminates configura-
tions with more than one particle on any site and the
interval I contains M adjacent momenta. For SU�n�,
each momenta in I has to be occupied by n particles
with different spins [23,24]. As the N-particle Slater-
determinant state j�N

SDi is a spin singlet by construction
and PG commutes with SU�n� rotations, j�0i is an SU�n�
singlet as well.

A nonorthogonal but complete basis for spin-polarized
two-spinon eigenstates with total momentum p � �k1 �
k2 is given by

 j�p1";p2"
i � PGck1#

ck2#
j�N�2

SD i; k1 > k2: (4)

These states are not eigenstates, but as HHS scatters k1 and
k2 in only one direction (increasing k1 � k2), there is a one-
to-one correspondence between these basis states and the
exact eigenstates constructed by superposition. The total
energy of the eigenstates takes the form (1) if and only if
the single-spinon momenta are shifted with respect to k1;2

[14,25]:

 p1;2 � �k1;2 �
1

2n
2�
N
; p1 < p2: (5)

The shift can be interpreted as manifestation of the
fractional statistics of the spinons [15,18]. For SU(2),
an energetically degenerate two-spinon singlet state

�zS�j�p1";p2"
i with the same single-spinon momenta ex-

ists only for p2 � p1 >
1
2

2�
N , as (5) is annihilated by �zS�

for p2 � p1 �
1
2

2�
N [11]. These features illustrate that the

rules specifying the allowed single-spinon momenta and
spin representations are nontrivial.

We now proceed by stating these rules without further
motivating or even deriving them. To begin with, the
Hilbert space of a system of N identical SU�n� spins can
be decomposed into representations of the total spin, which
commutes with (2) and hence can be used to classify the
eigenstates. This decomposition can be obtained using
Young tableaux [26], as illustrated for three S � 1

2 spins
in Fig. 1. The general rule is as follows. For each of the N
spins, draw a box numbered consecutively from left to
right. The representations of SU�n� are constructed by
putting the boxes together such that the numbers assigned
to them increase in each row from left to right and in each
column from top to bottom. Each tableau indicates sym-
metrization over all boxes in the same row, and antisym-
metrization over all boxes in the same column. This
implies that we cannot have more than n boxes on top of
each other for SU�n� spins. For SU(2), each tableau corre-
sponds to a spin S � 1

2 ��1 � �2� representation, with �i
the number of boxes in the ith row, and stands for a
multiplet Sz � �S; . . . ; S.

The main result presented in this Letter is that there is a
one-to-one correspondence between these Young tableaux
and the noninteracting many-spinon states, i.e., the eigen-
states of the HSM. The general principle is illustrated for
an SU(2) chain with four sites in Fig. 2, and for a few
representations of an SU(3) chain with six sites in Fig. 3.
The rule is that in each Young tableau, we shift boxes to the
right such that each box is below or in the column to the
right of the box with the preceding number. Each missing
box in the resulting extended tableaux represents a spinon.
The extended tableaux provide us with the total spin of
each multiplet, which is given by the representation speci-
fied by the original Young tableau, as well as the number L
of spinons present and the individual single-spinon mo-
menta p1; . . . ; pL. The latter yield the kinetic energy of the
many-spinon state, i.e., the energy of the corresponding
eigenstate of the HSM. We will elaborate on this now.

To begin with, we introduce a spinon momentum num-
ber (SMN) ai for each spinon. For an SU(2) chain, it is
simply given by the number in the box in the same column
(see Fig. 2). For a general SU�n� chain, the SMNs for the
spinons in each column are given by a sequence of num-

FIG. 1. Total spin representations of three S � 1
2 spins with

Young tableaux. For SU�n� with n > 2, the tableaux with three
boxes on top of each other exists as well.
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bers (half-integer for n odd, integers for n even) with
integer spacings such that the arithmetic mean equals the
arithmetic mean of the numbers in the boxes of the column.
To give an example, consider the extended tableau in the
second line in Fig. 3. In the first column, there is only one
box, and the arithmetic mean of the numbers in the boxes is
trivially 1. The SMNs for the two spinons are hence 1

2 and 3
2 ,

as these are integer spaced and have likewise arithmetic
mean 1. In the last column, there is only one spinon. The
SMN is given by the arithmetic mean of the two numbers in
the boxes, i.e., �5� 6�=2 � 11

2 . The individual spinon mo-
menta corresponding to SMNs ai are simply given by

 pi �
2�
N

ai �
1
2

n
; (6)

which implies � 	 pi 	
2�
n � � with � � 2�

N �
3

2n�
1
2� ! 0

for N ! 1. For SU(2), the total momentum and HS en-
ergies of the many-spinon states are given by (1) with

 p0 � �
�
2
N; E0 � �

�2

4N
; (7)

and the single-spinon dispersion

 ��p� �
1

2
p��� p� �

�2

8N2 ; (8)

where we use a convention according to which the ‘‘vac-
uum’’ state j ## . . . #i has momentum p � 0 (and the empty
state j0i has p � ��N � 1�). The corresponding formulas
for SU�n� are
 

p0 � �
�n� 1��

n
N;

E0 � �
�2

12

�
n� 2

n
N �

2n� 1

N

�
;

(9)

and

 ��p� �
n
4
p
�
2�
n
� p

�
�
n2 � 1

12n
�2

N2 : (10)

The simple formalism we just presented provides the com-
plete spectrum of the HSM.

These results were obtained heuristically, initially being
hardly more than an educated guess at what the equivalent
of Fock space for spinons might be. It is easy to see that the
momentum spacings for spin-polarized spinons predicted
by this formalism reproduce (5) for general n, and that
spinons of an SU�n� chain transform under representation
�n of SU�n� [25,27]. It is also rather easy to see that for
SU(2), there is a one-to-one correspondence between the
eigenstates predicted by our formalism and the known
asymptotic Bethe ansatz (ABA) solution [10,12] in terms
of motifs. It is further clear that the state counting
[12,15,27], i.e., the requirement that the total dimension
of the Hilbert space spanned by the many-spinon states
must be nN for a system consisting of N SU�n� spins,
works out automatically in the formalism, since the decom-
position in representations of total spin given by the Young
tableaux is complete and unaffected by our modification of
the tableaux.

To establish the correctness of our proposal, we have
compared the spectrum (classified in terms of total spin and
momentum quantum numbers) of the SU(2) and the SU(3)
HSM up to 12 sites obtained numerically by diagonalizing
(2) with the predictions of the tableau formalism and find
them identical. Finally, we have succeeded recently in
showing that the predictions of the formalism agree with
those made by the ABA for general n, as we will elaborate
elsewhere [28]. This is still short of a rigorous proof as the
applicability of the ABA to the model is heuristic as well,
but in light of the success of the ABA solutions and the
numerical work we carried out, we are confident that our
formalism is correct.

rep L a1, . . . , aL

1
2
3

4
5
6

1 → 1
2
3

4
5
6

0

1
3
4

2
5
6

1 → 1 2
3
4

5
6

�

�

�

3 � � �

1
2

3
2

11
2

1
2

43

5
6 8 → 1

2
43

5
6
�

�

� �

� �

6 � � � � � �

3
2

5
2

7
2

9
2

11
2

13
2

1
3 4

2 5 6
27 → 1 2

3 4
5 6

�

� � � � �

�

� � 9 �� � � � � � �
� � �

1
2

3
2

5
2

7
2

9
2

11
2

13
2

1 2 3 4 5
6 35 → 1 2 3 4 5

6� � � �

� � � � �

9 � � � � � �
� � �

1
2

3
2

5
2

7
2

9
2

11
2

FIG. 3. Examples of eigenstates of the SU(3) HSM with N � 6
sites in terms of colorons.

FIG. 2. Young tableau decomposition and the corresponding
spinon states for an S � 1

2 spin chain with N � 4 sites. The dots
represent the spinons. For SU(2), the spinon momentum num-
bers ai are given by the numbers in the boxes of the same
column. Note that

P
�2Stot � 1� � 2N .
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Remarks.—(a) For the polarized two-spinon states, there
is a correspondence between the fermion occupations in
the basis states (4) before projection and the tableau rep-
resentations (see, e.g., the Stot � 1 tableaux in Fig. 2). We
conjecture that such a connection exists in general. If so, it
would be desirable to have general rules for the construc-
tion of the required total spin representations with the
fermions annihilated before projection such that the basis
states with the same single-spinon momenta corresponding
to different tableaux are orthogonal. (b) The tableau for-
malism implies that the momenta of the spinons, as com-
pared to the momenta of the fermions before projection,
are shifted by 2�

N
1

2n towards each other if they are in
different columns of the tableau, and by the same amount
away from each other if they are in the same column.
(Since the ‘‘bare’’ momenta of the fermions are identical
in the latter case, it is not possible to shift them towards
each other.) The statistics of the spinons is hence that of
fermions shifted by a statistical angle �� � �=n [18]. This
implies � � ��1� 1

n� [17,25] for spin-polarized spinons.
(c) The formalism can be used to calculate thermodynamic
quantities. In this regard, it provides an alternative to the
‘‘freezing trick’’ method of Sutherland and Shastry [29].
(d) The formalism provides, as a by-product, the general
rules for which representations are possible for a given set
of spinons with given single-particle momenta (see Fig. 4
for examples). These rules may also be interpreted in the
framework of Yangian representation theory [30]. (e) Since
the low energy physics of the HSM is described by the
SU�n� level k � 1 Wess-Zumino-Witten model, the rules
for combining representations of spinons one may deduce
from our formalism will apply to the quasiparticles of this
theory as well. This connection has been exploited by
Bouwknegt and Schoutens [17,27], who obtained a signifi-
cant body of results for SU�n� spin chains from conformal
field theories.

In conclusion, we have established a one-to-one corre-
spondence between the Young tableaux classifying the
total spin representations of N spins and the exact eigen-
states of the Haldane-Shastry model for a chain with N
sites. This correspondence allows us to label the many-
spinon eigenstates in terms of their single-spinon mo-
menta, which are spaced according to highly nontrivial
rules. Since the spinons in the HSM are free in the sense

that they only interact through their fractional statistics, the
tableau formalism introduced here provides a general con-
struction principle of the free spinon Hilbert space, the
analog of a Fock space representation for spinons.
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