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The zero-energy bound states at the edges or vortex cores of chiral p-wave superconductors should
behave like Majorana fermions. We introduce a model Hamiltonian that describes the tunneling process
when electrons are injected into such states. Using a nonequilibrium Green function formalism, we find
exact analytic expressions for the tunneling current and noise and identify experimental signatures of the
Majorana nature of the bound states to be found in the shot noise. We discuss the results in the context of
different candidate materials that support triplet superconductivity. Experimental verification of the
Majorana character of midgap states would have important implications for the prospects of topological

quantum computation.
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When the individual constituents of a many-body system
interact nontrivially with each other, they can give rise to
low-energy states in which the elementary excitations are
very different from the original building blocks. Examples
among electronic condensed-matter systems include the
spinons and holons in Luttinger liquids (realized, e.g., in
single-wall carbon nanotubes) or the Laughlin quasipar-
ticles of fractional quantum Hall systems. In the context of
superconductors, Cooper pairs can be seen as a relatively
simple example of such excitations, but more exotic states
are also possible. In the present Letter, we are interested
in the case of p-wave chiral superconductors (i.e., with
an order parameter of the type p, = ip,), examples of
which would be strontium ruthenate (Sr,Ru0O,) [1,2] and,
possibly, a number of organic superconductors like the
Bechgaard salts {TMTSF},X; X = PF,, ClOy, ....) [3],
and even heavy fermions (e.g., UPt3) [4].

Superconductors with p-wave orbital symmetry have
spin-triplet pairing, and the order parameter is a tensor in
spin space rather than a scalar. This introduces extra free-
dom and allows for different types of superconducting
phases, first studied and observed in superfluid *He. In
the so called A-phase, Cooper pairs are in a state dubbed
“equal (or parallel) spin pairing”’ (ESP); all the examples
given above are candidate systems for ESP. Within weak-
coupling BCS theory, the up- and down-spin sectors are
then independent from each other, and the respective
Bogoliubov-de Gennes (BdG) equations are decoupled.
Another aspect of the A-phase of p-wave superconductors
is that it can support vortex-core bound states with a
spectrum given by E, = —wo(n + i) withn € Z, i =0
and w a frequency that depends on the details of the vortex
profile [5]. In particular, for n = 0, one notices that the
vortices support “zero modes.” (This should be contrasted
with the case of s-wave superconductors for which the
vortex bound-state spectrum has again the same form,
but this time 7 = 1/2, the other of the only two possibili-
ties consistent with the £ — —E symmetry of the BdG
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equations.) A more detailed consideration of these midgap
bound states in the case of ESP reveals that they have self-
adjoint wave functions, naturally described as Majorana
fermion modes, and can also be found as edge states [6].
Such Majorana states constitute one more example of an
exotic low-energy collective excitation that is very differ-
ent from the original electrons that condensed into the
superconducting state.

It would be already extremely interesting to be able to
experimentally identify these strange Majorana bound
states since that would constitute a stringent test of our
current picture of EPS p-wave superconductivity, but the
motivations run further. The availability of Majorana fer-
mions can be exploited in the context of quantum compu-
tation, a completely new and revolutionary approach to
computing that would mix aspects of the digital and the
analog computing paradigms by exploiting the basic laws
of quantum mechanics. Majorana operators (call them 7;)
can be taken in pairs to define standard fermionic operators
[say, ¢t = (n, + in;)/+/2]; each of these generates a two-
dimensional Hilbert space that can be used to define a
quantum-bit (qubit). Because the two Majorana bound
states can be spatially far apart (e.g., in two different
vortices) and are very different from the usual fermionic
quasiparticles around them, the so-defined qubit would be
relatively immune to decoherence [7], which would side-
step one of the crucial problems faced by the development
of quantum computing hardware. Moreover, it turns out
that the usual global gauge symmetry of the fermi fields is
reduced to a discrete Z, symmetry for the Majoranas at the
core of a vortex (and they can be shown to change sign
when a third vortex moves about encircling them [7,8]).
Changing the sign of a single Majorana bound state of the
pair that defines a qubit operates the change ¢t =c, or, in
other words, it acts as a qubit-flip (or g-NOT) gate, and the
7, symmetry being discrete leaves no room for errors. This
shows that braiding vortices would perform quantum-
logical operations on the information stored in them, an
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approach known as topological quantum computation (for
a recent review see Ref. [9]).

Recently, the overlap matrix element between a local-
ized electron and a Majorana bound state was computed for
a model of a superconducting wire (introduced in the
context of quantum computation [10]) and found to be
nonzero [11]. This indicates that tunneling transport into
Majorana modes is possible, which opens interesting pos-
sibilities since tunneling has proved repeated times to be an
invaluable tool in the study of superconducting states. The
study of tunneling noise might also be useful since shot
noise is another probe able to distinguish normal versus
superconducting states and ballistic versus diffusive trans-
port [12,13]; it can also be sensitive to the charge and
statistics of the carriers and was used, for instance, to
confirm the presence of Laughlin quasiparticles in frac-
tional quantum Hall devices [14]. Noise probes can be
local, in order to study localized states [15]. The purpose
of this Letter is to model the tunneling processes into
Majorana bound states and to determine the current and
noise characteristics in order to identify signatures that
would allow the experimental identification and study of
such states. A generalized geometry of the experiment we
consider is shown in Fig. 1. We shall find that the Fano
factor (or shot noise to current ratio) for such tunneling
processes has unit matrix structure and is given by

Sas(@=0
lim L) = 8ap
V/T—oo e(l, + 1)

Fa,B (1)
where a, B8 = {L, R} = *1 label the lead where the cur-
rents (I, g) are measured and S,z is the noise spectrum
defined below. This is different from the result for a regular
fermionic bound state for which F,z =1 /2 has a “flat”
matrix structure and is half as big— the full expressions
for the noise are given in Eq. (2) and (3). We shall argue

FIG. 1 (color online). Schematic representation of our model
for a setup in which two contacts (e.g., two STM tips) tunnel
electrons into the Majorana bound states at the core of vortices.
The two Majorana states might be linked with a tunneling
amplitude e. The setup is generic and any or both of the vortices
could be replaced by edge modes or obviated altogether. The
model would also apply to the case of multiband vortices with
two different Majoranas, one on each band; in such a case, €
corresponds to the amplitude of band mixing that can take place
at the core of the vortex.

that measuring the Fano factor would provide a clear
signature of the Majorana nature of a bound state.

The current-voltage characteristics for tunneling into
low-dimensional chiral p-wave superconductors was com-
puted before for the case of planar junctions using a BTK
formalism (including the bound states in a density of states
approximation) [16], or for point contacts using a micro-
scopic tunneling Hamiltonian and nonequilibrium Green
functions but in the absence of bound states (i.e., far from
vortices or edges) [17]. Here, we concentrate on the tun-
neling into bound states or edge modes for voltages smaller
than the superconducting gap and carry out full micro-
scopic calculations for the current as well as the noise.
Our starting point is the following tunneling Hamiltonian:

H = Hy + 2tpin (¢ + ) + 250} — ),

Here, 7, are two different Majorana operators (located,
for instance, in two different vortices; see Fig. 1), and
ha = [ wlkdk/ 2 are the fermions at the position of the
point contact in each of two leads. We consider only the
relevant spin projection of the ESP state and effectively
work with spinless fermions. The H;, term in the
Hamiltonian has two parts,

dk
Hy, = fz—skkl’lkl//ak and H,, = einm, — eclc,
T

where ¢! is defined as above and there is a term Hy , for
each lead. H . serves to model the case when the overlap
matrix element between the two Majorana bound states is
nonzero (cf. Ref. [11]). Notice that the terms in H involv-
ing n’s are bound to have the form they have due to
hermiticity requirements (cf. Ref. [8]). The overlap ampli-
tudes ¢, have to be real, and we can take them to be positive
for the sake of concreteness. The choice of relative signs in
the tunneling terms is arbitrary and amounts to a choice of
global gauges for the leads.
For generality, we shall rewrite the Hamiltonian as

H=Ho+ > [ty + gle) + asa(plet + cyo)]
a=L,R

The Majorana tunneling case is recovered by setting 6, =
t,, but on the other hand, we can set 6, = 0, and we have
the standard resonant level model that would describe a
regular (i.e., non-Majorana) edge or bound state [18]. We
can thus discuss the two cases using a common familiar
language and compare them more easily.

We start by computing the current, which is given by

1(0) = 5 (0(Nr = N)) = - (H. Ny = NeD)
e

Y [ata(GE, ~ GE) + 8,(FE, — FIE]

a=L,R

where GX. is the normal Keldysh component of the equal-
time Green function, iGX, = (¥,ct)e, and FXK, is its
anomalous counterpart, iFX, = ({,c)e (and similarly
mutatis mutandis for other components). In order to com-
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pute these Green functions, we follow the ‘“‘local action piK _ t as; bw * U,

approach** of Ref. [19], with the main difference that here “ 2w {i w—¢—il tanh T

the calculation is done fully analytically. The case of 6, = W= Lp

0 is relatively straight forward and was discussed before in + [aD (o * &) + yF (w)] Z tanhTsz}.

the literature (see [13] for a review); we therefore give here
only the results for the Green functions when 6, = ¢,. In
order to compute them, we work with positive frequencies
and adopt the spinor basis given by

V(w) = (W (0)] (@) dr(0)Ph(@)c(w)ct (@)

(where the bars stand for minus signs). Inverting the local
action—which is equivalent to solving the full nonequi-
librium Dyson equations— and restricting ourselves to the
symmetric case (f; = tp = t), we obtain the following
Green functions: (i) the localized-states Green functions,

1 - +
Gk = Z{—iDc(w — 8)<tanhw 2T,U«y + tanh™ 2T'U”/>}

1 . w—u o+ u
Fik = Z{—zyFAw)(tanh 5T Y + tanh 5T y>}
where weusedI' =1, + I'p with ', =
we will need also I'=

D (w) = zﬂ,z and F, (w) %zr)z The sums on y =
{L, R} are implicit and W = 4v (v is the Fermi velocity
in the leads). We introduce now the notation tg = —¢, =
1 and write, (ii), the inter- and intralead Green functions,

2( + 62) (later
«&041t,) to define the functions

1 32 /.L

GK ={5 "~ tanh? e tanh 227

apB 21%aB;
74 i’ Zzaﬁ
X [Dc(w - 8) + B')/F;(w) + ach(w)
+aBD . (w+¢)]
_ ( t,8 . LZSa@ >tanhw_'uz}
Laop\e—etinl otetinl 2T

D (w ~ o)

Z tanh

z=a,B
+ aByFi(w) + yF (o) + BD (w + €)]

1, 8a .88
+ + z
Zza‘,8<w—8+ur w+s+iLZF>

F! K——{

X tanhw .
2T

Finally, we use the convention that upper (lower) indices
correspond to upper (lower) signs ( * * means there is no

complex conjugation) and write, (iii), the ‘“‘tunneling”
Green functions,
t =8, w— pa
GK =—— ~— tanh
ZW{w—siiF MTor
- _ v W Ly
F[D(w — &) + ayF: (w)] Z tanhT}

=a,f

z=a,B

We now use the third set of Green functions and replace
in the formula for the current. Let us first quote the result
for a resonant level or double barrier (cf. Ref. [13]),

I T;Ty +oo W= Uy dw
f= D,(» — &)tanh ao
e r QZKLa ffoo (@~ e)tan 2T 27
2T, —
— Z LR a arctan® @ 4)
r—om ' &,

Notice the current becomes zero if either I'; or 'y vanish;
in fact, we always find I; = I (with I, = ea(d,N,)). The
situation is different when the tunneling is into a Majorana
state; in such a case, the two currents are independent
(parametrically related if € # 0) and given by

— Mo do
al’, D t h —
f cal®@) tanh——275 o

with (Vahd also if t; # tg)
40T — 2T — al)(w? — 2 = T2 + 1?)
(w2 — &2 — T2+ 12?2 + 42>
If ', =T% and € =0, then I = (I, + I3)/2 coincides
with the result for a resonant level. Even though the results
are mathematically different (notice that for the case of a
wire, ¢ # 0 always regardless of its size [11]), the differ-
ences might be hard to detect experimentally; but we shall
now see that the noise provides a more robust signature of
the Majorana nature of the tunneling intermediate states.
The noise is a measure of the deviations of the current
from its average value [Al, (1) = I,(r) — (I,(1))], and it is
standard to define it as the following correlator [13]:

Do) =

Supli — 1) = %(AIQ(I)AIB(Z') T AL()AL().

Its Fourier transform is known as the noise power spectrum

and for 6, = 0 is given by
aft,t
Sap(w) = ——L[Gl. o Gf. + Gl o G,
—GK, 0 GE — GK o GE ]

For the general case, the expression is similar but longer; it
involves also anomalous Green functions and comprises
thirty-two terms with a mix of both correlation [20] and
convolution products.

We concentrate on the zero-frequency noise component
and first rederive the result for a resonant level [21,22]:

S (a) = O) eV 4FRFL I F2
2af T Y — coth( — |2 — -
&2 cot <2T>{( Iz )e 2

y 4T \2 o' —& BL
< I ) [(w’ — &)+ F2LR}
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where eV = w; — wp. In the fully-symmetric case (u; =
—ur = pand t; = tp = 1), it takes the form

o' —¢

Sap© _, com( Y\ _ T i
&2 COth(ZT){e 277[((1)’ —e) + F2:|_M} @

and the Fano factor becomes F,p = 1— 20, /T* —
1/2 as mentioned earlier. On the other hand, when the
tunneling takes place into a Majorana bound state, we
find the following result (for the fully-symmetric case):

Saple=0) eV I TI? (w'—¢) Ttm
2O _ coth( ) los, L | 8
e? 0 <2T>{ “Pe 277[(w’—s)2+f‘2}
[ (et p)+T2
n :
dme (e —u)*+ Fz}

—u

_aB

Notice that the diagonal and off-diagonal matrix compo-
nents of S,z are different now. In particular, we remark
that lim, (S, = 0. Taken together with the result given
above for the current, this indicates that in the £ — 0 limit,
the right and left tunneling processes are completely inde-
pendent even at the level of current fluctuations. It is
therefore instructive and important to study this case
more in detail because of its greater simplicity and its
relevance to single-tip setups. We relax the condition on
the chemical potentials (i.e., consider u;, wg arbitrary)
and find that the noise can be written as

Sap(0) Pa\[, 1o _4To 204
) th| — 12— — —1L 3
B = dupcot() 272 =T8S @)

Given the right-left independence, we expect the expres-
sion to be valid also when #; # tz. In particular, this
implies that the Fano factor, Eq. (1), is not sensitive to
the contacts asymmetry, unlike what happens for 6z ; = 0.

Presently, the likely best place to find single Majorana
bound states is at the edges of Bechgaard salts. In the
presence of magnetic fields much larger than the paramag-
netic limit, but still smaller than H_,, the superconducting
state ought to be similar to the Al-phase of *He in which
all the spins are aligned with the magnetic field and effec-
tively there is only one spin species. The situation in the
case of strontium ruthenate is more complex, and the
existence of single Majorana bound states seems more
elusive. Let us start by pointing out that the vortices that
support isolated Majorana zero modes are no less bizarre
themselves: they carry only half of the superconducting
flux quantum, and the vorticity lies entirely in one of the
spin sectors while the other one does not show a winding
phase at all [23]. Recent scanning tunneling microscope
(STM) studies of Sr,RuO, have found a square lattice of
vortices with a full flux quantum each [24], even though the
magnetic field was presumably large enough to take the
system into an ESP state [1,9]. However, the experiments

did find a strong zero bias conductance peak that remains
unexplained. One possibility is that the observed vortices
are built out of two half-vortices, one for each spin projec-
tion. In that case, one would expect, respectively, two
Majorana bound states and & in our model would be related
to the amplitude of spin mixing at the vortex core. If this is
the case, the vortices would not have the same braiding
properties as the half-vortices, but the Fano factor would
nevertheless be sensitive to the Majorana nature of the
midgap states. Whether these “double half-vortices”
would still be useful for topological quantum computation
would require further investigation, but identifying them
experimentally would be extremely interesting in any case.

We would like to acknowledge discussions with
E. Altman, B. Halperin, J. Hoffmann, A. Kolezhuk, and
A. Polkovnikov. This work was partially supported by NSF
(No. DMR-0132874).

[1] H. Murakawa et al., Phys. Rev. Lett. 93, 167004 (2004).

[2] J. Xia et al., Phys. Rev. Lett. 97, 167002 (2006).

[3] Chem. Rev. 104, No. 11 (2004), issue on Molecular
Conductors.

[4] H. Tou et al., Phys. Rev. Lett. 77, 1374 (1996).

[5] N.B. Kopnin and M. M. Salomaa, Phys. Rev. B 44, 9667
(1991).

[6] N. Read and D. Green, Phys. Rev. B 61, 10267 (2000).

[7] D.A. Ivanov, Phys. Rev. Lett. 86, 268 (2001).

[8] M. Stone and S.-B. Chung, Phys. Rev. B 73, 014505
(2006).

[9] S. Das Sarma, M. Freedman, and C. Nayak, Phys. Today
59, No. 7, 32 (20006).

[10] A. Yu. Kitaev, arXiv:cond-mat/0010440.

[11] G.W. Semenoff and P. Sodano, arXiv:cond-mat/0601261.

[12] A.L. Fauchére, G.B. Lesovik, and G. Blatter, Phys.
Rev. B 58, 11177 (1998).

[13] Y.M. Blanter and M. Biittiker, Phys. Rep. 336, 1 (2000).

[14] L. Saminadayar et al., Phys. Rev. Lett. 79, 2526 (1997).

[15] H. Birk, M.J.M. de Jong, and C. Schonenberger, Phys.
Rev. Lett. 75, 1610 (1995).

[16] K. Sengupta et al., Phys. Rev. B 63, 144531 (2001).

[17] C.J.Bolech and T. Giamarchi, Phys. Rev. Lett. 92, 127001
(2004).

[18] More precisely, for Andreev bound states, a toy model for
a zero-energy state in a singlet-pairing superconductor
would correspond to 6, = t5 and either 7z or ¢; equals
zero. We expect such a model to have similar shot noise
and current-voltage characteristics as a resonant level.

[19] C.J. Bolech and T. Giamarchi, Phys. Rev. B 71, 024517
(2005).

[20] [G) ° Gl(@) = [42Gy( +4)Ga(w' = 9.

[21] L.Y. Chen and C.S. Ting, Phys. Rev. B 43, 4534 (1991).

[22] D. V. Averin, J. Appl. Phys. 73, 2593 (1993).

[23] S. Das Sarma, C. Nayak, and S. Tewari, Phys. Rev. B 73,
220502(R) (2006).

[24] C. Lupien et al., arXiv:cond-mat/0503317.

237002-4



