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The peculiar nature of electron scattering in graphene is among many exciting theoretical predictions
for the physical properties of this material. To investigate electron scattering properties in a graphene
plane, we have created a gate-tunable potential barrier within a single-layer graphene sheet. We report
measurements of electrical transport across this structure as the tunable barrier potential is swept through a
range of heights. When the barrier is sufficiently strong to form a bipolar junction (n-p-n or p-n-p) within
the graphene sheet, the resistance across the barrier sharply increases. We compare these results to
predictions for both diffusive and ballistic transport, as the barrier rises on a length scale comparable to the
mean free path. Finally, we show how a magnetic field modifies transport across the barrier.
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The recent discovery by Novoselov et al. [1] of a new
two-dimensional carbon material—graphene—has trig-
gered an intense research effort [2–4]. Carriers in gra-
phene have two unusual characteristics: they exist on two
equivalent but separate sublattices, and they have a nearly
linear dispersion relation. Together these ingredients
should give rise to remarkable transport properties includ-
ing an unusual suppression of backscattering [5]. Unlike in
conventional metals and semiconductors, electrons in gra-
phene normally incident on a potential barrier should be
perfectly transmitted, by analogy to the Klein paradox of
relativistic quantum mechanics [6–8]. Backscattering
would require either breaking of the ‘‘pseudospin’’ sym-
metry between electrons living on the two atomic sublat-
tices of the graphene sheet [8] or a momentum transfer of
order of the Fermi wave vector kF, which can only be
produced by a sharp, atomic-scale step in the potential.
In addition to the obvious relevance to future graphene-
based electronics, understanding transport across potential
barriers in graphene is essential for explaining transport in
graphene close to zero average density, where local poten-
tial fluctuations produce puddles of n- and p-type carriers
[9]. We report an experiment in which a tunable potential
barrier has been fabricated in graphene, and we present
measurements of the resistance across the barrier as a
function of the barrier height and the bulk carrier density.

To create a tunable potential barrier in graphene, we
implemented a design with two electrostatic gates, a global
back gate and a local top gate [Fig. 1(a)]. A voltage Vb
applied to the back gate tunes the carrier density in the bulk
of the graphene sheet, whereas a voltage Vt applied to the
top gate tunes the density only in the narrow strip below the
gate. These gates define two areas in the graphene sheet
whose densities n2 —underneath the top gate—and n1 —
everywhere else—can be controlled independently
[Fig. 1(b)]. The graphene was deposited by successive
mechanical exfoliation of natural graphite crystals using
an adhesive tape (Nitto Denko Corp.) [1]. After exfoliation,
thin graphite flakes were transferred onto a chip with

280 nm thermal oxide on top of an n�� Si substrate,
used as the back gate. A single-layer graphene sheet was
identified using an optical microscope, and 30 nm thick
Ti=Au leads were evaporated onto the sheet using standard
e-beam lithography. To form the dielectric layer for the top
gate, a thin layer of polymethyl methacrylate (PMMA
molecular mass 950 K, 2% in anisole) was then spun
onto the Si chip at 4000 rpm for 35 s and baked at
180 �C for 2 min. On one section of the graphene sheet,
the PMMA was cross-linked by exposure to 30 keV elec-
trons at a dose of 21 000 �C cm�2 [10]. The unexposed
PMMA was removed by soaking the chip for 10 min in
acetone. Finally, a 50 nm thick, 300 nm wide Ti=Au strip
was deposited on top of the cross-linked PMMA using
standard e-beam lithography to form the top gate
[Fig. 1(c)]. Raman spectroscopy of the sheet indicates
that it is in fact composed of a single layer [11–13].

FIG. 1 (color online). (a) Cross-section view of the top gate
device. (b) Simplified model for the electrochemical potential U
of electrons in graphene along the cross section of (a). The
potential is shifted in region 2 by the top gate voltage and shifted
in both regions 1 and 2 by the back gate voltage. (c) Optical
image of the device. The barely visible graphene is outlined with
a dashed line and the PMMA layer appears as a (blue) shadow. A
schematic of the four-terminal measurement setup used through-
out the Letter is shown.
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We performed conventional four-terminal current-
biased lock-in measurements (100 nA at 12.5 Hz) of the
resistance of a PMMA-covered L � 1:3 �m by w �
1:7 �m section of a graphene flake, in which a potential
barrier can be induced by the top gate [Fig. 1(c)]. All the
measurements were performed in liquid helium at 4 K. In
Fig. 2(b), this resistance is plotted as a function of both the
back gate voltage Vb and the top gate voltage Vt [14]. Two
clear white lines appear, indicating local maxima in the
resistance in the different regions of the graphene sheet. In
the bulk of the sheet (region 1), the average carrier density
is given by n1 � Cb�Vb � V

0
b�=e, where the back gate

capacitance per area Cb � 14 nF cm�2 is inferred from
Hall measurements of other graphene flakes on the same
oxide layer. The horizontal white line marks the neutrality
point (n1 � 0) in this region, allowing us to estimate V0

b �

31:5 V. In region 2, the average density n2 � n1 �
Ct�Vt � V

0
t �=e is modulated not only by the back gate,

but also by the top gate, with capacitive coupling Ct. The
voltage V0

t is not necessarily zero, since the chemical
doping in regions 1 and 2 can differ, and this difference
can vary widely from sample to sample. The diagonal
white line marks the neutrality point underneath the top
gate (n2 � 0). The slope of this line provides the relative
coupling of the graphene sheet to the two gates: Ct=Cg �
6:8, so Ct � 1:0� 102 nF cm�2. Using the PMMA thick-
ness of 40 nm as measured by atomic force microscopy,
this value leads to a dielectric constant �PMMA � 4:5 (close
to the accepted room temperature value for non-cross-
linked PMMA). The crossing point of these white lines
yields V0

t � �1:4 V [13].
Transport fluctuations seen in Fig. 2 are a reproducible

function of gate voltages and magnetic field (universal
conductance fluctuations [15]) with amplitude �G �
0:2e2=h [16]. The magnetoresistance is almost perfectly
symmetric in magnetic field, as expected [13]. We extract
the phase coherence length L’ � 4 �m and the intervalley
scattering length Liv � 0:15 �m from the weak localiza-

tion peak. L’ > Liv indicates that the sample is lying flat
on the substrate [13,17,18].

Figure 2(a) shows selected cuts through Fig. 2(b): device
resistance across the potential barrier as a function of the
top gate voltage Vt, for several values of the bulk density
n1. Each curve has a maximum close to n2 � 0, arising
from the enhanced resistivity of the graphene in region 2.
However, each curve is noticeably asymmetric with respect
to this maximum: the resistance depends on whether or not
the carriers in region 2 (electrons or holes) are the same
type as those in region 1. Specifically, for given absolute
values of the densities n1 and n2, the resistance is always
higher if the carrier types in the two regions are opposite
(n1n2 < 0) than if the carriers are the same throughout. In
order to highlight the effects of p-n junctions between
regions 1 and 2, we extract for each value of n1 the part
of the resistance Rodd which depends on the sign of
the carriers in region 2: Rn1

�n2� � Reven
n1
�n2� � Rodd

n1
�n2�,

Reven
n1
��n2� � Reven

n1
�n2�, and Rodd

n1
��n2� � �Rodd

n1
�n2�

(Fig. 3) [19]. The resistance of the device away from the
junctions (region 1 and possibly the interior of region 2)
does not depend on the sign of n2 and hence is entirely
contained in Reven, which we do not examine further.

The presence of p-n junctions between regions 1 and 2 is
associated with a substantial increase of the overall resist-
ance [white areas compared to black areas of Fig. 3(b)]. We
label each section of Fig. 3(b) with the carrier types in
region 1 and 2, ‘‘p’’ for holes and ‘‘n’’ for electrons, to
emphasize that enhanced resistance is associated with an
n-p-n or p-n-p junction. The junction-sensitive resistance
curves are almost symmetric upon simultaneous sign
change of both densities n1 and n2: left-right reflection
and color swap in Fig. 3(a), or 180� rotation about the
center in Fig. 3(b). Deviations from this symmetry are
presumably associated with uncontrolled spatial fluctua-
tions in the density. Strikingly, a sharp step appears in the
resistance as the boundary between n-n-n and n-p-n or
p-n-p configurations is crossed. We can explore the under-
lying physics of such a resistance increase in two opposite
regimes: strongly diffusive or ballistic. Which applies to
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FIG. 2 (color online). (a) Resistance across the graphene sam-
ple at 4 K as a function of the top gate voltage for several back
gate voltages, each denoted by a different color. (b) Two-
dimensional gray scale plot of the same resistance as a function
of both gate voltages. Traces in (a) are cuts along the corre-
spondingly colored lines.
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FIG. 3 (color online). (a) Odd component of the resistance: the
part which depends on the sign of the density n2 in region 2.
(b) Gray scale plot of the odd component of the resistance for
many values of n1. Colored lines are the cuts shown in (a).
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experiments depends on whether the elastic mean free path
is greater than or less than the length over which the
potential barrier rises.

In a simple model, the electrostatic potential U�x� in-
duced by the set of two gates in the graphene sheet changes
linearly between regions 1 and 2 over a width 2d
[Fig. 1(b)]. Assuming perfect screening in the graphene
sheet (a good approximation for our relevant density
range), we estimate d � 40 nm independent of carrier
density, by solving the Laplace potential in the region
between the top gate and the graphene. If the elastic
mean free path le is much shorter than d, the total resist-
ance can be estimated by integrating the local resistivity
across the device. The conductivity ��x� at any position x
depends only on the density of charge carriers n�x� and can
be inferred from resistance measurements where the den-
sity is uniform [13]. It can be approximated by an inter-
polation between low and high density behavior
��x� � f	e�n�x�
2 � �2

ming
1=2 [4] where the mobility is

� � 2� 103 cm2 V�1 s�1 and �min � 4e2=h. Using d �
40 nm and a width w � 1:7 �m, we plot the predicted odd
part of R�Vt� with respect to the voltage V�n2�0�

t for each
value of n1 in Fig. 4(a).

At high enough density, where the conductivity � of
graphene is proportional to the density of charges, one can
define a mean free path le in an isotropic diffusive model
by � � 2kFlee2=h, where kF �

�������
�n
p

is the effective
Fermi wave vector defined relative to the K point of the
Brillouin zone [20]. For n1 � n2 � �1012 cm�2, one can
see in Fig. 2(a) that � � 6�2e2=h� [21]. Therefore, le �
0:03 �m for n � �1� 1012 cm�2. The mean free path is
then already of the order of d for a few volts applied to the
back gate. Hence, the diffusive model is a poor approxi-
mation and is unable to reproduce the data shown in Fig. 3.

The opposite regime of ballistic transport has been
considered in the limits of sharp and smooth potential
steps. We use here the results of Cheianov and Fal’ko
[8], which are valid in the limit jn1j; jn2j � d�2. Note
that the results for a sharp barrier [6] lead to the same
qualitative results for Rodd

n1
�n2� but are more than 10 times

smaller than what follows. The transmission probability
���1� for electrons impinging from region 1 on the inter-
face between regions 1 and 2 depends strongly on the angle
of incidence �1 with respect to normal incidence, and is
given by

 ���1� � e�2�3=2d	jn1j=�jn1j
1=2�jn2j

1=2�
sin2�1 if n1n2 < 0:

(1)
We incorporate both interfaces of the potential barrier

into the resistance calculation in the following way. In the
fully ballistic regime (le � L2; d, where L2 is the distance
between the two interfaces), all possible reflections at the
interfaces, and their interferences, must be taken into ac-
count. However, in the regime of this experiment, where
le � d L2, the two interfaces can be considered as
independent resistors in series. Using a Landauer picture,
the (antisymmetric) conductance through the full barrier is

then

 Gn-p-n �
1

2

4e2

h

Xmmax
y

my��mmax
y

e�2�1=2d	�2�my=w�2=�jn1j
1=2�jn2j

1=2�
;

(2)

where we sum the transmission coefficients of incident
modes having all possible values of the quantized
wave vector component perpendicular to the interface
ky � 2�my=w, with my integer and mmax

y �

	
����������������������������������
�min�jn1j; jn2j�

p
w=2�
. Each such mode carries a con-

ductance 4e2=h, where the degeneracy factor 4 is charac-
teristic for graphene. The presence of two interfaces in
series gives an overall prefactor of 1=2.

Using d � 40 nm and w � 1:7 �m, we plot the calcu-
lated odd part of the resistance in our ballistic model as a
function of Vt in Fig. 4(b) for the same densities n1 as in the
strongly diffusive case, assuming that the resistance in the
case where the sign of n is uniform is much smaller than
1=Gn-p-n. Although the results of the ballistic model are of
the same order of magnitude as the measured values of the
odd part of the resistance, the model is unable to reproduce
some aspects of the experimental data. In particular, the
model does not explain why Rodd

n1
does not only jump but

continues to increase as jn2j passes beyond zero density.
This behavior is particularly surprising as, for fixed n2,
Rodd
n1

decreases with increasing jn1j. Furthermore, by con-
struction, the model does not apply close to zero density n1

or n2.
A complementary test of the unusual transmission

through a potential barrier in graphene as a function of
the angle of incidence was proposed by Cheianov and
Fal’ko [8]. In the fully ballistic regime, the resistance
across the barrier is predicted to increase as soon
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FIG. 4 (color online). (a) Using the strongly diffusive model
described in the text, one can predict the resistance as a function
of the top gate voltage Vt for several values of the density n1

(each represented by the same color as in Fig. 3). Here we plot
the odd part of this calculated resistance (cf. Fig. 3) for a barrier
smoothness d � 40 nm and a width w � 1:7 �m. (b) Similar
curves for several densities n1 using the ballistic model de-
scribed in the text. The curves are plotted only for densities n2

not too close to zero: n2 > 1011 cm�2 (the model diverges at
n2 � 0) and dashed lines link the curves at opposite sides of
n2 � 0.
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as a magnetic field applied perpendicular to the graphene
sheet gets higher than a typical value B? �
@=e�

������������
�jn2j

p
=�L2

2d�
1=2, where L2 is the barrier length

(0:3 �m via scanning electron microscopy). Using the
values d � 40 nm, L2 � 0:3 �m, and n2 � 2�
1012 cm�2, one gets B? � 0:1 T.

Figure 5 shows measurements of the antisymmetrized
resistance across the device for several values of a mag-
netic field B applied perpendicular to the graphene sheet,
with the top gate voltage Vt adjusted to maintain n2 �
�n1. This odd part of the resistance shows an enhancement
as the magnetic field increases above 2.5 T, an order of
magnitude higher than the predicted transition field B?.
The fully ballistic model is therefore unable to explain the
results of our measurements in magnetic field. In fact, the
diffusive model also predicts an increase of Rodd

n1
as B

increases, due to magnetoresistance of the strip near zero
density between p and n regions. If the entire graphene
sheet is set to zero density, its resistance increases
with magnetic field similarly to Rodd

n1
at n2 � �n1 � 2�

10�12 cm�2 (Fig. 5). This qualitative agreement indicates
that while ballistic physics plays a role in transport across
the individual p-n junctions, transport through the full
n-p-n barrier is far from ballistic.

In conclusion, we have fabricated a gate-tunable barrier
device from a single-layer graphene sheet, and have hence
created bipolar junctions within graphene. We study trans-
port across the potential barrier as a function of Fermi level
and barrier height, as well as in the presence of an external
magnetic field, and demonstrate that a sharp increase in the
resistance occurs as the potential crosses the Fermi level.
This increase is better described by a ballistic than a
diffusive model, but the dependence of the additional
resistance as a function of the barrier height is not yet
understood. A clear explanation of this behavior is essen-
tial for realizing many exciting proposed graphene elec-
tronics applications, such as electron focusing [22].
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FIG. 5 (color online). Odd part of the resistance as a function
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