
Collective Excitations in Electron-Hole Bilayers

G. J. Kalman,1 P. Hartmann,2 Z. Donkó,2 and K. I. Golden3
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We report a combined analytic and molecular dynamics analysis of the collective mode spectrum of a
bipolar (electron-hole) bilayer in the strong coupling classical limit. A robust, isotropic energy gap is
identified in the out-of-phase spectra, generated by the combined effect of correlations and of the
excitation of the bound dipoles. In the in-phase spectra we identify longitudinal and transverse acoustic
modes wholly maintained by correlations. Strong nonlinear generation of higher harmonics of the
fundamental dipole oscillation frequency and the transfer of harmonics between different modes is
observed.
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An impressive amount of work has been devoted over
the past decades to the properties of charged particle bi-
layers, consisting of two quasi-two-dimensional (2D)
layers separated from each other by a distance d, such
that d is comparable to the interparticle distance. The
physics of such systems is remarkable, because of the
interplay of the 2D dynamics and 3D interaction. In the
bipolar bilayers (BPBL) the charges in the two layers have
opposite polarities. The physical realization of the BPBL is
the electron-hole bilayer in semiconductors, which has
been of special recent interest [1]. The main distinguishing
feature of the bipolar system is that, in the appropriate
parameter domain, the electrons and the holes bind to each
other in a dipolelike excitonic formation [1,2]. These ex-
citons may also form a Bose condensate [1,3–5]. It is
also expected that at strong enough coupling the system
undergoes a transition into a Wigner crystal-like solid
phase [2,3]. A recent work has also pointed out the ex-
citing possibility of the existence of a supersolid phase
over the dipole-solid domain [6]. A more detailed pic-
ture has emerged from a Monte Carlo simulation of a
strongly coupled classical BPBL [2], revealing the exis-
tence of dipole-liquid, dipole-solid, Coulomb-liquid, and
Coulomb-solid ‘‘phases.’’ There is little doubt that the
topology delineated by the classical phase diagram [2] is
quite generally correct [6].

A central problem for bilayer systems is the spectrum of
collective excitations. This spectrum in the case of the
electronic bilayer (EBL), where the charges in the two
layers are identical, has been shown to possess the unique
feature that it becomes qualitatively changed once the
system is in the strong coupling regime [7–9]. Does the
BPBL exhibit a similar behavior? This is the problem we
address in this Letter in the framework of mapping out the
full collective mode spectrum of the BPBL in the strong
coupling (SC) regime. We study the parameter range that
spans all four phases but we focus on the more important
and more intriguing SC liquid states. From the point of

view of the collective mode spectrum, the dominant char-
acteristic of the SC regime is the localization or quasiloc-
alization of the particles, either in the crystalline solid or in
the SC liquid phase [10]. This fact and the physical sepa-
ration of the two oppositely charged layers that prevents
their collapse allows one to represent the dynamics of the
collective modes in the BPBL, even in the quantum do-
main, through a classical modeling [7,10,11]. The in-layer
exchange effects, precisely because of the quasilocaliza-
tion of the charges, contribute only to generating an
exchange-correlation energy, which is well emulated by
the equivalent classical correlation energy [12], and tun-
neling is insignificant, because for any reasonable layer
separation d value d=aB � 1. This latter condition also
ensures that the excitation energy of the exciton is well
described in terms of its classical Kepler frequency.

Our approach is based on a combined classical molecu-
lar dynamics (MD) simulation and theoretical analysis. To
study collective excitations, simulation of a large number
of particles is needed, which, at present, becomes feasible
only by using a classical approach. Hence the special merit
of the classical MD simulation. What the classical ap-
proach obviously misses, however, is primarily the effect
of condensate (discussed later).

The BPBL model consists of two 2D monolayers 1
and 2 with intralayer and interlayer interactions given
by ’11�k� � ’22�k� � 2�e2=k, ’12�k� � ’21�k� �
��2�e2=k� exp��kd�. While in an electron-hole bilayer
the masses in the two layers are, generally speaking, un-
equal, a simplified symmetric model with equal masses
gives insight into the dominating aspects of the mode
spectrum [5]. Within the classical modeling, the symmetric
BPBL system is then characterized by (i) the in-layer Cou-
lomb coupling coefficient ���e2=akT� [a��n���1=2 is
the Wigner-Seitz (WS) radius, n is the areal density of
particles] and (ii) d, the separation distance between the
two layers. Addressing first the theoretical description of
the collective mode spectrum, one should realize that, in
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contrast to the case of the EBL, for layer separations of
interest a weak coupling approach is bound to fail—even
at low � values—due to the dominance of the excitonic
bound state in the spectrum. Nevertheless, as a matter of
orientation, we can start with the random phase approxi-
mation (RPA). The diagonalization of the ’ interaction
matrix in the layer space leads to the identification of 2
longitudinal modes as in-phase and out-of-phase (�)

modes: !L
��k� � !0

������
ka
p
�1� exp��kd�	1=2, where !0 ��������������������

2e2=ma3
p

. The small-k behavior of the 
 mode is acous-
tic, here with a slope s
 � !0

������
ad
p

, while the � mode has
the typical 2D ! /

������
ka
p

behavior. Thus, the RPA misses,
as it must, the appearance of the frequency of the intrinsic
oscillation (excitation) of the dipole in the spectrum. In
addition, the RPA is also unable to account for the
correlation-induced shear modes. In an appropriate SC
description, both of these effects should be correctly rep-
resented. We adopt the quasilocalized charge approxima-
tion (QLCA) [10,13], the method that we previously
employed to identify the gapped excitation in the collective
spectrum of the EBL [7]. The longitudinal (L) and trans-
verse (T) QLCA dielectric matrices in layer space (i; j) [7]
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nk2

m
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are the Fourier transforms of hij�r� � gij�r� � 1, where
gij�r� is the pair distribution function and A is a large but
finite surface. The resulting mode structure
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now exhibits a behavior significantly different from its
RPA counterpart. These dispersion curves were calculated
by using MD-generated hij�r� data and are displayed to-
gether with MD results (see below) in Fig. 1. (i) At k � 0
the � mode becomes a gapped mode [see also Fig. 2(a)],
with

 !L
��k � 0� � !T

��k � 0� � �G�d�; (4)

where �G�d� is a functional of h12�r� as given in [14]. In
the BPBL h12�r� is governed by a central peak h012�r�
around r � 0 [2] [see Fig. 2(c)]. For d=a < 1 �G�d� is
well described by replacing h12�r� by h012�r�. When this
central peak is approximated by a Gaussian (represent-
ing a thermally excited dipole) �G�d� becomes �0K�d�,
the thermally broadened small amplitude oscillation
Kepler frequency �K�d� �

�������������������
2e2=d3m

p
� !0�a=d�3=2 of

the oscillating dipole. Dipole-dipole correlations shift
�G�d� from this value only for d=a > 1. (ii) The longitu-

dinal 
 mode may be regarded as a density oscillation of
the dipoles: with a 1=r3 type dipole-dipole interaction, this
suggests an ! / k dispersion. This is borne out by the
present calculation: the 
 mode shows an acoustic behav-
ior, similarly to the RPA result, but with a phase velocity
instead of being proportional to �d=a�1=2 is of the order of
d=a: s � !L


�k! 0�=k � !0d��99=96�
R
d �rg12�r�=�r2	1=2

[see Fig. 2(b)]. (iii) In addition to the 2 longitudinal modes
2 transverse shear modes appear, with a behavior qualita-
tively similar to their longitudinal counterparts, except
that, as expected for shear modes in a liquid, the T

mode does not extend below a finite kC value (see Fig. 1
inset) [15]. (iv) For k! 1 all four modes approach the
Einstein frequency (the frequency of oscillation of a single
particle in the frozen environment of the others) [7] of the

FIG. 1. Dispersion relations for the L
, L�, T
, and T� modes
( �k � ka) at � � 40 and different layer separations. The legend
shown in the �d � d=a � 0:6 plot applies to all panels. Lines:
QLCA; symbols: MD simulation. Inset shows the observed
values of �kcutoff of the T
 mode.

FIG. 2. (a) Dependence of the Kepler frequency �K, the
thermally shifted Kepler frequency �0K , and the gap frequency
�G on �d at � � 80. Also shown for comparison is the EBL gap.
(b) s
 sound velocity versus �d for � � 80. (c) MD pair corre-
lation functions for � � 80 and �d � 0:6 (left [right] vertical
scales pertain to the left [right] horizontal segment of the
diagram).
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system:

 �2
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1
2�

2
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where �2
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2
0=2�
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 0:38!2

0 is the
Einstein frequency of an isolated 2D layer [16] (see later).

Illustrative longitudinal and transverse current-current
correlation spectra obtained from our MD simulations
(based on the particle-particle –particle-mesh method
[17] with periodic boundary conditions) are displayed in
Fig. 3 for � � 40 and d=a � 0:6. The MD-generated
dispersion relations inferred from the spectral peaks for
the 4 modes for � � 40 and for a series of d=a values are
displayed in Fig. 1, together with theoretically calculated
values. Agreement between the QLCA theory and simula-
tion data is very good, especially for lower k values.
Deviation from the characteristic d3=2 behavior of �K�d�
seems to occur on passing the (dipole liquid)/(Coulomb
liquid) phase boundary around d=a � 1:1 and 1.4 for � �
40 and 80, respectively [2]. Comparison with the EBL
spectrum [7,8] reveals a more pronounced and more robust
gap value [Fig. 2(a)], which is not unexpected if one is
mindful of the different physical mechanisms responsible
for creating the gap.

A remarkable feature of the simulation spectra is the
appearance of higher harmonics of the gap frequency: we
observe the emergence (a) of the third harmonic in the �
spectra and (b) of the second harmonic (but not the funda-
mental) in the 
 spectra [Fig. 4]. These harmonics are the
most pronounced around � � 40 in the strongly coupled
dipole-liquid phase, showing a diminishing trend both for
lower and higher coupling values: at high � values the low
amplitude of the thermally excited oscillations is not con-

ducive to the generation of harmonics, while at lower �
values the thermal motions damp the higher harmonics.

We calculate the phonon spectrum of the crystalline
phase, through the standard harmonic approximation, by
summing over a lattice of 2� 107 sites. In the solid phase
the BPBL crystallizes in a hexagonal structure, with the
particles in the two layers facing each other (for any layer
separation, in contrast to the EBL that exhibits a variety of
lattice structures). The mode spectrum is shown in Fig. 5.
One can recognize the 4 modes identified in the liquid
state, with an expected anisotropic dispersion and with
the understanding that the ‘‘longitudinal’’ and ‘‘trans-
verse’’ labeling of the modes describes their polarization
for propagation along the principal crystal axes only.

The�modes in the lattice spectrum exhibit a k � 0 gap,
very similar to the one in the liquid spectrum; in contrast to
the EBL, the gap is not split by the lattice anisotropy. This
is a consequence of the quasi-isotropy of the hexagonal
lattice environment to O�k2�. Physically, the � modes can
be regarded, in a good approximation, especially for small
d=a values, as the superposition of a 
 mode on the �K
dipole oscillation frequency. The angle-averaged modes
emulate the liquid-phase mode dispersion for low and
moderate k values, but deviate substantially from it for k!
1. To understand this difference, one has to focus on
h012�r�, which shows a quasi-Gaussian behavior in the
liquid, but becomes a delta function in a perfect T � 0
lattice. The contribution of oscillating dipoles within a
Gaussian distribution results in a superposition of random
phases at k! 1, averaging out to 0, ensuring the limit
shown in Eq. (5). In contrast, a delta-function distribution
generates coherent k-independent terms that survive for
k! 1. The simulation results clearly indicate that even
for high � values the large but finite k dispersion curves
follow the trend set by Eq. (5) that pertains to the liquid,
rather than the one pertaining to the lattice. The great
sensitivity of the behavior of the mode dispersions at
higher k values to the width of h012�r� could motivate an
observational technique to acquire information on the

FIG. 3. Longitudinal current (a), (b) and transverse current (c),
(d) fluctuation spectra obtained at � � 40 and �d � 0:6. The
arrows indicate increasing wave numbers �k as listed in the
panels. Note the appearance of higher harmonics of the gap
frequency: the second and fourth harmonic in the 
 spectra, and
the third harmonic in the � spectra.

FIG. 4. Longitudinal current fluctuation spectra showing the
higher harmonics of the gap frequency for �k � 3:54, �d � 0:6.
The transverse spectra behave similarly.
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width of central peak distribution through tracking the
high-k behavior of the collective excitations.

The phonon spectrum in the BPBL was the subject of a
recent investigation by [18]. This work addressed the
behavior of the dipolar ‘‘phase’’ within a model that rep-
resents the system as a 2D (d � 0) lattice of dipoles with
an intrinsic degree of freedom: this approach, reasonable as
it may appear, leads to the violation of the local rotational
symmetry exhibited by the 2D hexagonal lattice [19]. In
particular, [18] finds (i) that the gap is split and there are
disparate transverse and longitudinal gap values, (ii) that
both of these exhibit an anisotropic behavior, and (iii) that
for k! 0 the� mode dispersion curves exhibit a negative
slope. These features violate basic physical principles
pointed out above.

In summary, we have determined the dispersion charac-
teristics of a strongly coupled symmetric bipolar (electron-
hole) bilayer in the strongly coupled domain, where the
dominant exchange-correlation energy provides a suffi-
cient quasilocalization of the particles to engender a qua-
siclassical behavior. Our analysis in the strongly coupled
liquid phase is based on the MD simulation of the density
and current fluctuation spectra and on the application of the
theoretical QLCA technique. The benchmark phonon spec-
trum in the crystalline solid phase is determined through
lattice summation technique. The results of all these vari-
ous approaches reinforce each other and provide a coherent
physical picture. The 4 modes, characteristic of bilayer
systems [in phase (out of phase), longitudinal (transverse)]
emerge, with the expected k � 0 energy gap in the spec-
trum of the out-of-phase mode [7,8]. The latter now is
mostly governed by the intrinsic oscillation frequency of
the dipoles and affected by collective interaction only in
the Coulomb phase, for d * a. A remarkable effect, unique
to the strongly coupled liquid phase, the generation of
harmonics of the gap frequency and the transfer of the
even harmonics from the out-of-phase to the in-phase
mode, has been observed.

While the QLCA description of the collective modes
captures the dominant physics, the quantum simulation
results of [5] point at two effects that may somewhat
modify the QLCA mode dispersion: (i) all the peaks—
especially the central one—of g12�r� are broadened by the
finite width of the wave packets [compare Fig. 2(c) with
Fig. 3 of [5]) [this would be reflected in a similar modifi-
cation of Dij�k�], (ii) the presence of a condensate which
would manifest itself by reducing the quasilocalization of
the particles (as clearly demonstrated by [20]). A rough
estimate of this expected reduction is provided by replac-
ing hij�k� [and thus Dij�k�] by �hij�k� � �1� f�

2hij�k�,
where f is the condensate fraction, as suggested by [21].
Since f in the SC regime is expected to be quite small (f �
0:02 [5]), this should not be a dramatic effect.
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FIG. 5. (a) Lattice dispersion of the quasi-L
 and quasi-L�
(solid lines) and quasi-T
 and quasi-T� (dashed lines) modes for
a series of lattice angles between 0� � � � 30� (� � 0� cor-
responds to the nearest neighbor direction, the arrows indicate
increasing �). (b) Comparison at �d � 0:6 of QLCA (at � � 80)
and angular averaged lattice dispersion.
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