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We present a theory for size-dependent shapes of Pb nanoprecipitates in Al, introducing the concept of
‘‘magic shapes,’’ i.e., shapes having near-zero homogeneous elastic strains. Our quantitative atomistic
calculations of edge energies show their effect on precipitate shape to be negligible, thus it appears that
shapes must be due to the combined effect of strain and interface energies. By employing an algorithm for
generating magic shapes, we replicate the experimental observations by selecting magic-shape precip-
itates with interfacial energies less than a cutoff value.
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A major goal of nanoscience is to understand and control
the properties of functional nanostructures, including, for
example, catalyst particles, quantum dots on surfaces, and
inclusions in alloys. Such properties are often determined
by the nanostructure shape. The Wulff construction, based
on minimization of interfacial energy subject to a con-
straint of constant volume, predicts that the cluster shape
will be independent of cluster size. Experimentally, how-
ever, changes in cluster shapes are often observed as cluster
sizes approach the nanoscale. Conventionally such size-
dependent shape effects are attributed to the increasing
contribution of edge energies relative to interfacial ener-
gies at small size. For example, edge energies are included
in theories for the shapes of snow crystals [1], discussions
of surface faceting [2], theories for the shapes of strained
Ge pyramids grown on a surface [3], and discussions of Pb
inclusions in bulk Al [4]. Until very recently [5,6], no
atomistic calculations of edge energies had been published.

Here we present a theoretical examination of size-
dependent shapes observed for Pb nanoprecipitates in Al
[4,7]. Using the embedded atom method (EAM) with
potentials from Landa and co-workers [8], quantitative
calculations of the total precipitate energies and relevant
edge energies were performed. We find the effect of edge
energies on precipitate shape to be negligible for all sizes
and conclude that observed size-dependent shape effects
must be explained by the minimization of interfacial en-
ergy and strain energy. We present an algorithm for gen-
erating precipitate shapes with very small homogeneous
strain energies and use the term ‘‘magic shapes’’ to de-
scribe these special precipitate shapes. The minimization
of precipitate interfacial energies subject to the magic-
shape constraint accounts for the observed size-dependent
shape effects.

Figure 1 summarizes the experimental TEM observa-
tions for Pb precipitates formed by ion implantation and
annealing [7]. A few of the smallest precipitates are octa-
hedral, bounded by f111g-type Pb=Al interfaces. The larg-
est precipitates are approximately tetrakaidecahedral,

bounded by f111g- and f100g-type Pb=Al interfaces (see
upper right inset of Fig. 1). The plotted aspect ratio is
C= �A � 2C=�A1 � A2� where C is the spacing between a
pair of f100g-type interfaces, and A1 and A2 are the spac-
ings between the two pairs of f111g-type interfaces. EAM
calculations for Pb=Al interfacial free energies have pre-
viously been reported [9] giving �100 � 48:44 meV= �A2

and �111 � 41:44 meV= �A2 at T � 400 K (in the vicinity
of the experimental annealing temperature). The predicted
aspect ratio at 400 K from the Wulff construction isC=A �
�100=g111 � 1:165. For larger precipitates, the measured
aspect ratio is close to this value; however, as seen in Fig. 1,
smaller precipitates behave quite differently, and exhibit a
wide range of aspect ratios.

To understand these shape effects, we calculated pre-
cipitate energies for octahedral, tetrakaidecahedral, and
cuboctahedral Pb precipitates inserted into similarly
shaped voids in a block of Al with periodic boundary
conditions. The sizes and shapes of the Pb precipitates
and the Al voids were selected to obtain relatively small
homogeneous elastic strains. Figure 2 compares the calcu-
lated precipitate energies for the different shapes over a
range of precipitate sizes. The x axis is N1=3

Pb which, for a
given shape, is proportional to the edge length, thus allow-
ing comparison of energies for precipitates with similar
volumes (i.e., similar N1=3

Pb ). For this 0 K calculation, the
Wulff construction predicts C=A � 1:31, based on T �
0 K EAM interface energies, �100 � 36:38 meV= �A2 and
�111 � 27:76 meV= �A2. However, our EAM calculations
show that these three shapes are competitive in energy over
various parts of this size range.

In order to understand the roles of interface, strain, and
edge energies in determining precipitate shapes, it is nec-
essary to separate their respective contributions to the
precipitate energy, Eprecip � Einter � Estrain � Eedge �

Evertex. To be specific, we illustrate by presenting the
calculations of the edge energy "111-111 for octahedral Pb
precipitates inserted in octahedral Al voids.
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We started with a block of approximately 105 Al atoms
with periodic boundary conditions. Next an octahedron of
Al atoms with noct atoms on each edge was removed. This
void was filled by inserting an octahedron of Pb atoms with
moct atoms on each edge. Because the lattice constants of
Pb and Al are in the ratio aPb=aAl � 11=9, only very small,
elastic strains are generated if noct=moct � 11=9. The start-
ing configurations are naturally categorized by the value of
� � noct �moct as shown in Table I. For a given �, a small
range of values formoct will correspond to precipitates with
relatively small homogeneous strain. The total EAM en-
ergy Etotal was determined by relaxing atomic positions
using conjugate gradient energy minimization.

From Etotal, the precipitate energy was obtained by sub-
tracting the total cohesive energies, thus Eprecip � Etotal �

NAlEAl � NPbEPb, where NPb is the number of Pb atoms in
the precipitate, NAl is the number of Al atoms in the Al ma-
trix surrounding the precipitate, and EAl and EPb are the
bulk cohesive energies. The total number of atoms in the
periodic simulation cell is NAl � NPb. Eprecip is plotted by
the red points and fitted curves in the upper portion of
Fig. 2.

The next step will be to calculate Eprecip � Einter �

Estrain � Eedge � Evertex. Before discussing the details of
this calculation, we wish to point out that for the lowest
strain precipitates, Eprecip is less than Einter, and thus
Estrain � Eedge � Evertex is negative (as shown in the lower
portion of Fig. 2). Since the strain energy can only be zero
or positive, this implies that Eedge � Evertex is negative. The
quantitative calculation of these quantities follows.

A previous publication [5] has described the calculation
of edge energies for free Pd nanoclusters. A precise defi-
nition of edge length, based on the concept of the Gibbs
equimolar dividing surfaces, was found to be absolutely
essential in order to define and quantify the edge and vertex
energies [10]. We use that definition to write

 soct �

� ������������������������
m3

oct �
moct

2
3

r �
aPb���

2
p :

Here soct is the edge length of the octahedron, moct is the

FIG. 2 (color). Summary of EAM calculations for Pb in Al.
The upper plot shows Eprecip as a function of the cube root of the
number of Pb atoms in the precipitate. The insets show the three
shapes considered: octahedra, tetrakaidecahedra, and cuboctahe-
dra. The relative precipitate energies for these three shapes can
be compared at a particular value of N1=3

Pb (corresponding to a
given volume). The lower plot is constructed from the octahedra
calculations by subtracting Einter � A111�111 from the precipitate
energy, leaving Estrain � Eedge � Evertex (plotted as red points)
and fit by a parabola for each value of � (see Table I). The
minima of the parabolas represent the energies of zero-strain
octahedral precipitates. The slope of the black line tangent to the
parabolas gives the edge energy "111-111 � �19:5 meV= �A.

FIG. 1 (color). The upper right-hand inset shows a typical Pb
precipitate in Al with the precipitate size defined as �A � �A1 �
A2�=2. The red points show experimentally measured aspect
ratios for a large experimental sample of such nanoprecipitates.
The blue line shows the aspect ratio predicted by edge energies
from the quantitative atomistic calculations described in the text.
The square symbols plot the predictions of the magic-shape
theory described in the text. The upper left inset shows two
precipitates with a notch along one edge, also consistent with the
magic-shape theory.

PRL 98, 236102 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
8 JUNE 2007

236102-2



number of atoms on an edge (including a vertex atom at
each end), and aPb is the lattice constant of lead. The total
area of an octahedron is A111 � 2

���
3
p
s2

oct. By subtracting the
total interface energy, we find Eprecip � A111�111 �

Estrain � Eedge � Evertex. This quantity is plotted in red in
the lower portion of Fig. 2 for the �, noct, and moct values
listed in Table I. Points for octahedra having � � 5 or 6 are
also plotted. These points are fit by parabolas since the
strain energy for small homogeneous strains can be written
as Estrain � ��soct � so�2 where so represents the octahe-
dron edge length corresponding to zero elastic strain for a
given value of �, and � is a constant for a given value of �.
The strain energy can be estimated from analytical models
for a spherical inclusion in a spherical void [7]. Curvatures
of the parabolas plotting Estrain are in good agreement with
that estimate.

To extract the edge energy, a tangent line was con-
structed to the parabolas having � � 2, 3, 4, 5, and 6, as
plotted in black in the lower section of Fig. 2. The slope of
that tangent line gives the edge energy. This tangent line
misses the minimum of the � � 1 parabola, suggesting
that the separation into edge and vertex energies is prob-
lematic for extremely small octahedra with 3, 4, or 5 Pb
atoms on an edge. The edge energy calculated from the
slope of the tangent line is "111-111 � �19:5 meV= �A.

In order to calculate "111-111 we used the same proce-
dure, but considered only cuboctahedral precipitates. For
cuboctahedra, a different formula (see Ref. [5]) must be
used to relate the edge length of a cuboctahedra scub to
mcub, the number of Pb atoms on an edge. The calculated
edge energy is "111-100 � �19:2 meV= �A. The two edge
energies for Pb precipitates in Al are essentially equal.

We next consider the possible role of edge energy and
interface energy based on the assumption that residual
strains may be neglected. This is consistent with the ob-
servation that inclusions have nearly zero residual strain
when they adopt magic-size dimensions [4]. For this case
we write the energy of a truncated octahedral precipitate in
the form E � Einter � Eedge. To find the minimum energy
for constant volume V, as a function of shape, we use
Lagrange multipliers to minimize the function,

 F � E=�111 � �V

� 2
���
3
p
s2 � 6���

���
3
p
�t2 � 12�s� �

���
2
p
s3=3� �

���
2
p
t3;

where s is the edge length of the untruncated octahedron,
t is the truncation length, � � �100=�111, � � "=�111,
and " � "111-111 � "111-100 � �19:5 meV= �A. Setting
@F=@t � @F=@s � 0 and replacing the parameters t and
s with appropriate combinations of the measured parame-
ters C and �A, we obtain the aspect ratio as a function of size
�A as follows: C= �A � ���

���
6
p
�= �A�=�1�

���
2
p
�= �A�. This

function (calculated using 400 K interfacial free energies)
is plotted in Fig. 1 as a blue line. It is apparent from the plot
that these edge energies have essentially no effect on the
shape of Pb nanoprecipitates in Al. We have also confirmed
that uncertainties in the edge energies on the order of
"111-111 � "111-100 � 5 meV= �A will change the aspect ra-
tio by only a very small amount. We also note that edge
energy cannot explain the increasing scatter in aspect ratio
observed for the smaller precipitates.

Since edge energy cannot be responsible for these ef-
fects, and they cannot be explained solely by interface
energies (as in the Wulff construction), we turn our atten-
tion to strain energy, the only remaining possibility. In the
following we consider how to construct a set of possible
precipitate shapes having zero (or very small) homogene-
ous strain.

We start by observing that an fcc lattice can be built
using two fundamental building blocks, a square pyramid
(with one atom at each vertex) and a tetrahedron (also with
one atom at each vertex). The rhombohedral primitive unit
cell of the fcc lattice has one octahedral interstitial site and
two tetrahedral interstitial sites, and can be constructed by
placing two square pyramids base to base, forming an
octahedron, and adding two tetrahedra placed on opposing
triangular faces of this octahedron. If one wants to build
strain-free fcc Pb precipitate nanoclusters in Al, it can only
be done by assembling tetrahedral and square pyramid
building blocks having 9 atoms on an edge. Such nano-
clusters can be placed in a void created by removing the
same Al shape having 11 atoms on an edge. In order to
build these shapes with zero strain, the edge length of the
tetrahedra and the square pyramids must be 9 times the Pb
nearest neighbor distance or 31.5 Å. The concept of magic
sizes, discussed in the literature [7], can be replaced by the
criteria of magic shapes built from tetrahedra and square
pyramids with edge length sbb � 31:5 �A. For any shape
constructed of these building blocks, the strain energy is

TABLE I. This table lists some of the octahedral precipitate configurations used for the EAM calculations. These configurations
have relatively small homogeneous strain and correspond to the lowest strain points plotted in red in Fig. 2. Here, noct is the number of
Al atoms on an edge of the removed Al octahedron andmoct is the number of Pb atoms on an edge of the inserted Pb octahedron. These
cases are selected to have small homogeneous elastic strains by choosing noct=moct � aPb=aAl, and are grouped according to the value
of � � noct �moct.

� � 1 � � 2 � � 3 � � 4

moct � 3, noct � 4 moct � 7, noct � 9 moct � 12, noct � 15 moct � 17, noct � 21
moct � 4, noct � 5 moct � 8, noct � 10 moct � 13, noct � 16 moct � 18, noct � 22
moct � 5, noct � 6 moct � 9, noct � 11 moct � 14, noct � 17 moct � 19, noct � 23

moct � 10, noct � 12 moct � 15, noct � 18
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zero, and the interfacial energy can be calculated based on
the interfacial areas, A111 and A100, of the shape assembled
from these building blocks.

In reality, we are interested not only in completely
strain-free precipitates, but also in precipitates having
very small homogeneous strains. Examples of such precip-
itates are listed in Table I in the columns labeled � � 1 and
� � 3. To cover cases having odd as well as even integer
values of � requires working with smaller structural build-
ing blocks having edge length sbb � 15:75 �A. (The shapes
with zero strain discussed in the previous paragraph can of
course be assembled from these smaller building blocks.)
The ‘‘magic shapes’’ are the set of possible precipitate
shapes (and sizes) with zero or small strain, built with
these building blocks with edge length sbb � 15:75 �A.

We now have in hand the tools needed to explain the
experimental data. In particular we have an algorithm to
generate a set of precipitates with zero or small homoge-
neous strain. To illustrate, we consider precipitates withOh
symmetry, with shapes generated by starting with an octa-
hedron with edge length s, and removing 6 square pyra-
mids with edge length t. In order that the precipitates be
nearly strain free, the concept of magic shapes requires that
s must be quantized in units of sbb � 15:75 �A, i.e., s �
psbb where p is a positive integer. Similarly, t must be
quantized as t � qsbb, where q is an integer 0 � q < p=2.

Since these precipitates are nearly strain free, and since
we have shown that edge energies make only a negligible
contribution to shape effects, the precipitate energies are
approximately equal to the interface energies, Eprecip �

Einter � A111�111 � A100�100. The aspect ratio is C=A �
�1� t=s�

���
33
p

, the total (100) area is A100 � 6t2, and the
total (111) area is A111 � 8s2 � 24t2. Here we use the T �
400 K interfacial free energies in order to predict the C=A
ratio.

At this point, we know the aspect ratio and the interface
energy of all the (nearly) stain-free precipitates with Oh
symmetry. In order to predict the observed aspect ratios as
a function of precipitate size, we need a criterion for
deciding which precipitate energies might actually occur
in a quasiequilibrium distribution of precipitates. For a
given precipitate volume, it is easy to calculate the inter-
facial energy EWulff of a precipitate with the Wulff shape.
Since this is the lowest possible energy for a given volume,
we find it convenient to work with the energy �E �
Eprecip � EWulff . For precipitates at equilibrium, one would
expect a Boltzmann distribution of precipitate shapes with
a characteristic e��E=kT probability. In this experiment, the
precipitates are not at equilibrium and Ostwald ripening
would continue slowly during further annealing. In order to
reproduce the experimental shape distribution (shown as
red points in Fig. 1), we rejected all precipitate sizes and
shapes having �E> 60 eV. While not rigorous, it appears
that this energy criterion allows a shape distribution which,
while far from equilibrium, is slowly ripening at the an-
nealing temperature thereby avoiding shapes with very

large �E. In Fig. 1 the black symbols represent the com-
plete set of precipitate particles meeting four conditions:
Oh symmetry, magic shape (i.e., near zero strain), �E �
60 eV, and �A � 55 �A. The agreement between this magic-
shape theory and the experimental data is seen to be good.

Finally we note that, in addition to the precipitates with
Oh symmetry, there are many other precipitates which
break this symmetry. In all cases, the experimentally ob-
served shapes are consistent with the concept of magic
shapes and nearly zero strain. The insets in Fig. 1 show two
such cases where the symmetry is broken. In the upper
right-hand inset the symmetry is broken because A1 � A2,
while in the other inset the symmetry is broken by remov-
ing a row of tetrahedra and square pyramids to form a
notch at an edge along the viewing direction.

To summarize, the model presented in this work ac-
counts for the observed behavior of nanoscale solid inclu-
sions. In particular, it is shown that while edge energy has a
negligible effect on shape, strain energy leads to a se-
quence of magic shapes. The increasing granularity of
such magic shapes at smaller sizes explains the increased
scatter around the Wulff shape observed experimentally.
We explain the experimental data by assembling magic
shapes from building blocks which are tetrahedra and
square pyramids with edge lengths sbb � 15:75 �A. Given
a set of magic shapes, we find that the members of this set
with relatively small interface energies are the shapes that
are observed. By providing an explanation for all the
experimental data, our model offers an understanding of
how nanoscale inclusions approach equilibrium under con-
straint within a solid matrix.
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