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Control of the Liquid-Liquid Transition in a Molecular Liquid by Spatial Confinement
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Generally, phase transitions are seriously affected by spatial confinement. This effect is important for its
own sake, but also for applications to nanotechnology. Here we report the first systematic experimental
study on confinement effects on a liquid-liquid transition of a molecular liquid. We found that one liquid
can be transformed into another purely by spatial confinement. This indicates that the liquid state cannot
be specified by the temperature and pressure alone, but it is also affected by its size in a discontinuous
manner: the phase of a liquid in a narrow space can, in principle, be different from that in the bulk. This
finding would deepen our basic understanding of the liquid state.
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The divergence of the correlation length & of the order
parameter (e.g., density for a vapor-liquid transition and
magnetization for a paraferromagnetic transition) is a key
characteristic of critical phenomena [1]. It is well known
that many phase transitions are dramatically affected by
geometrical confinement when ¢ becomes comparable to
the characteristic length of confinement d. This is because
critical fluctuations are suppressed at least along the direc-
tion of the confinement; even the effective spatial dimen-
sionality may be changed. This problem of finite-size
effects on phase transitions has been intensively studied
both theoretically and experimentally due to its fundamen-
tal importance [2—6]. One of the main results is the d
dependence of the critical temperature 7,.. According to
Fisher’s scaling theory [2],

[TC(OO) - Tc(d)]/Tc(oo) o (d/a)i/" (D

where a is the lattice (or atomic) size and A = 1/v (v
being the critical exponent for &). This relation was con-
firmed, for example, for the superfluid transition tempera-
ture of liquid He* [5]. Confinement effects also play an
important role in a strongly first-order phase transition [4];
e.g., the freezing point of water confined in mesoporous
materials is significantly lowered. This problem has re-
cently reattracted considerable attention due to its rele-
vance in nanotechnology.

Usually it is believed that any single-component sub-
stance has only one unique liquid state. Contrary to this
common sense view, many pieces of experimental and
numerical evidence have recently been accumulated for
the existence of a liquid-liquid transition (LLT), namely,
the existence of more than two liquid states for a single-
component substance [7]. In addition to these examples, a
few years ago we found firm experimental evidence for the
existence of LLT in molecular liquids, triphenyl phosphite
(TPP) [8,9], and n-butanol [10], at ambient pressure. We
discovered two types of LLT kinetics upon the transforma-
tion of liquid I to liquid II: one is nucleation-growth (NG)
type; the other is spinodal-decomposition (SD) type. For
T > Tgp, where Tgp is the spinodal temperature, liquid 1T is
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nucleated in liquid I in the form of spherical droplets and
then these droplets grow linearly with time. Finally, the
system becomes homogeneous liquid II. For T < Tgp, on
the other hand, the amplitude of the order-parameter fluc-
tuations grows exponentially in time and its characteristic
length remains constant in the early stage. This is charac-
teristic of Cahn’s linear regime [1]. Then, the characteristic
domain size R grows as R ~ t*3. This exponent suggests
that the order parameter governing the LLT is a noncon-
served variable [1]. Finally, the system becomes homoge-
neous liquid II. We proposed that the order parameter gov-
erning LLT may be the fraction of locally favored struc-
tures, which is a nonconserved order parameter [11]. From
the early stage of SD-type LLT, we estimated ¢ and found
that ¢ exhibits the following critical divergence: & =
El(Tsp — T)/Tspl™7, where the bare correlation length
&01s 60 nm, Tsp = 215.5 K, and v = 0.5 [9]. This critical-
like divergence near the spinodal line (far from the critical
point) is rather unusual. This may be explained by the
mean-field nature of LLT, which is supported by the long
bare correlation length and the value of v = 1/2 (see, e.g.,
Ref. [1]).

Practically, this unusually large value of &, is quite
useful for controlling LLT by spatial confinement, since
¢ can easily reach the length scale of microns near Tgp.
This means that in TPP a confinement of the order of
microns should induce significant finite-size effects on
LLT. Studying finite-size effects may also be useful for
elucidating the nature of the order parameter. In particular,
it is not clear why the bare correlation length & of this sys-
tem is so long compared to the molecular size (~1 nm)
and what it represents. This is one of the most mysterious
problems, which may be intimately related to the nature of
LLT. Finite-size effects on LLT may yield valuable insight
into these difficult, but important, questions.

We also mention another importance of the study of
finite-size effects. Recently, confinement effects have
been used to study the LLT in liquid water (see, e.g.,
[12]), which, even if it exists, is completely hidden by
crystallization in bulk water. In these studies, a spatial
confinement is used to avoid the crystallization of water.
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However, there have so far been no studies on confinement
effects on the LLT itself. So it is crucial to study finite-size
effects on the LLT not only for elucidating the nature of the
order parameter governing the LLT, but also for uncovering
the LLT hidden by the other ordering phenomena such as
crystallization by using a confinement.

The sample used was TPP, which was purchased from
Acros Organics and used after extracting only a crystalliz-
able part. We avoided moisture to prevent chemical decom-
position. We observed the transformation process from
liquid I to liquid II with phase-contrast microscopy. We
prepared a wedge-shaped sample cell, whose wedge angle
6 is 0.0075 rad. We also prepared a sample cell, which was
made of two parallel thin glass plates. The spacing between
the two cover glasses was controlled to be between 1 and
20 pm by using monodisperse glass beads as spacers. The
temperature was controlled within £0.1 K by a computer-
controlled hot stage (Linkam LK-600PH) with a cooling
unit (Linkam L-600A). We confirmed that there are few
surface wetting effects on LLT by using a wedge-shaped
cell. We saw wetting of neither liquid I nor liquid II at the
edge part of the wedge cell; in other words, there is no
filling transition [13]. This enables us to study solely finite-
size effects on LLT in our cells without suffering from
other surface effects such as wetting and random-field ef-
fects. We also confirmed good reproducibility of the ex-
periments. The intensity distribution function P(I) and the
structure factor S(g) were calculated from an optical mi-
croscopy image, using digital image analysis (DIA) [14,15].

First we show a pattern observed in a wedge-shaped cell
at7 = 214 Kand r = 150 min during the LLT [Fig. 1(a)].
Here ¢ is the time after the temperature quench. We con-
firmed that for a thick enough sample (bulk) the trans-
formation pattern is SD type at this temperature [8,9].
However, the transformation behavior clearly depends on
d [Fig. 1(a)]. The transformation pattern is SD type at large
d; however, droplets of liquid II nucleate and grow with
time for small d, which is smaller than the critical thick-
ness dgp. We can see the increase of the droplet number
density with an increase in d. To analyze this change in a
more quantitative manner, we calculated the intensity dis-
tribution function P(I, d) from an image [15] as a function
of d. Here P(I, d) represents an average of P(I, h) over a
region d — 6d < h <d + dd, where h is the spacing be-
tween the upper and lower glass and we set 6d to be
0.15 pm. Figure 1(b) shows the d dependence of the shape
of P(I, d). We can see two types of shapes of P(I, d): For
small d, P(I) has a peak with a distinct shoulder indicative
of the appearance of a small additional peak. The existence
of the two peaks in P(I,d) indicates that liquid I and
liquid IT coexist during the transformation. This is a char-
acteristic feature of NG-type LLT [9,16]. For large d, on
the other hand, P(I, d) has only a broad peak, suggest-
ing that the density distribution during the transformation
is continuous, even though microscope images might
give an impression that there are distinct droplets (see
Refs. [9,16]). For SD, P(I), which initially has a sharp
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FIG. 1 (color online). (a) Phase-contrast microscopy image. A
top view of a wedge-shaped sample cell filled with TPP. T =
214 K and t = 150 min. The black region on the left-hand side
is the edge of the wedge-shaped cell. The sample thickness is
indicated with dashed lines below the image. Scale bar corre-
sponds to 100 wm. (b) d dependence of the intensity (/) distri-
bution function P(I) at T =214K and = 150 min.
(c) Contour plot of the d dependence of P(I). With an increase
in P(I), the color becomes brighter. The white lines are the
contours of P(I).

peak at the intensity of liquid I, becomes broad in the
intermediate stage, and finally becomes sharp again to
form a peak at the intensity of liquid II [9]. The absence
of a double-peak structure of P(I) is characteristic of SD of
a nonconserved order parameter. We use this difference in
the shape of P(I) as a fingerprint to distinguish NG and SD.

Figure 1(c) indicates the intensity map of P(I, d). For
small d, P(I, d) has a peak around I = 150 and has a grad-
ual slope around / = 100, which corresponds to the shoul-
der. We can see a distinct change in the shape of P(/, d) at
d = dgp = 3.8 um, reflecting the change of the shape of
P(I) from double peaked to single peaked [see Fig. 1(b)].
This means that Tgn(d) = 214 K at d = 3.8 wm. This
sharp change of the behavior at d = 3.8 um is consistent
with the mean-field nature of LLT [9], namely, a shape
boundary between NG and SD behavior [16].

Next we studied the kinetics of SD-type LLT under a
planar confinement at various 7,’s to obtain the d depen-
dence of the critical divergence of ¢&. We calculated S(g)
from each image, using DIA [14,15], and extracted the
peak wave number g,. Figures 2(a) and 2(b) show the
temporal change of ¢, and the shape of S(g,) at 212 K,
respectively, for three different d’s. g, is constant with
time and the peak intensity S(q,,) increases exponentially
(not shown) in the initial stage of SD-type LLT: Cahn’s
linear regime. Then, ¢, decreases as g, ~ ¢ *>. This
crossover occurs since nonlinear effects start to play an
important role after this crossover time, reflecting the
enhancement of the amplitude of the order-parameter fluc-
tuations [1]. The late-stage time exponent (1/2) is consis-

235701-2



PRL 98, 235701 (2007)

PHYSICAL REVIEW LETTERS

week ending
8 JUNE 2007

a 1.8f

=
(=
T
.
’
)
L

S@)/S@y) =

e
=
[}

FIG. 2. (a) Temporal change of ¢, at 212 K for
d =10 pm (A), 2.5 um (O), and 2 um (O). (b) Comparison
of the normalized scattering function S(¢)/S(q,) at the times
indicated by the arrows in (a) for d = 10 wm (dash-dotted line),
2.5 pm (dotted line), and 2 pwm (solid line).

tent with the prediction of the Allen-Cahn relation,
dR/dt ~ Lt (L being the kinetics coefficient), which
describes the domain interface motion in a system of a
nonconserved order parameter [1,9]. We can see that the
temporal change of g, for various d’s almost collapses on
the same power law in the late stage, which indicates that L
is independent of d.

On the other hand, g, in the linear regime does depend
on d. This means that £ is a function of d since we have the
relation of & = 1/(\/§qp) in the linear regime [1,9].
Figure 3(a) shows &(T) for various values of d [17]. We
confirmed that £(T, d) is well fitted by &(T, d) = &y(d) X
[(Tsp(d) — T)/Tsp(d)]~*. We found v = 0.50 = 0.02 for
all the cases, which means that LLT obeys a mean-field
theory under the confinement as in bulk. Thus, we fixed
v = 0.5 to reduce the number of the adjustable parameters
in the fitting of the above function to the data and to obtain
the d dependence of &,(d) accurately. We independently
determined Tgp(d) from optical microscopic measure-
ments (see, e.g., Fig. 1). Figure 3(b) shows the d depen-
dence of &;, which is obtained from the fitting. We can
clearly see that £,(d) decreases with a decrease in d. We
also found the following empirical relation: &q(c0) —
&o(d) = &y(00) exp(—d/d,), where d, is the characteristic
decay length and is determined as 2.79 um by the fitting.
This decrease in the mesoscopic length &, may reflect the
suppression of hierarchical ordering in a liquid induced by
specific intermolecular interactions. If this is the case, it
may share some common physics with the suppression of
the hydrogen-bonded network in confined water under a
stronger confinement [18]. This may have a significant
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FIG. 3. (a) d dependence of the critical divergence of ¢:
©O) d=10pum, (O) d=5um, (A) d=3 um, and
() d =2 um. The position of the vertical lines represents
Tsp(d) independently determined by optical microscopy obser-
vation of the transformation process. The fitted curves are also

shown by the lines of the same types as the vertical ones. (b) d
dependence of &,. The dashed line is the bulk value for &.

implication on the question of the origin of the long bare
correlation length. We speculate some hierarchical struc-
tural ordering takes place in this liquid and it plays a
crucial role in LLT. For an extremely strong confinement,
&y might become short enough to break the mean-field
nature of the transition.

Figure 4(a) plots ATgp = Tgp(00) — Typ(d), where
Tsp(o0) = 215.5 K [8], as a function of d/&y(d). Usually,
this shift of the critical temperature is plotted against d/a
to check the prediction of Fisher’s scaling [2]. Note that in
ordinary systems the bare correlation length &, = a is
associated with the size of the elementary length scale of
a system such as the size of constituent molecules or atoms.
Thus, it is not expected that &, or a, depends on d.
However, in our case, the bare correlation length, which
is an intermediate length scale much larger than the mo-
lecular size a, does depend upon d. Using d/ &, as a new
key parameter instead of d/a, we recover ATgp
[d/&,(d)]"* with A =2, which is consistent with
Fisher’s scaling A = 1/v (note » = 0.5 in our case). We
expect that this generalized scaling relation ATgp o
[d/€&o(d)]~"” may hold universally.

We also found that the binodal temperature Tgy is low-
ered by the spatial confinement. Figure 4(b) shows the
temperature dependence of the growth speed of liquid II
droplets, V, for strong and weak confinement. We fit
to the data V = V,exp[—B/(T — T,)]exp[—mo?ITgn/
AH(Tgny — T)kgT], where V,, B, o, I, AH, and kg are
the prefactor, the Vogel-Fulcher activation energy for vis-
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FIG. 4. (a) d dependence of ATgp. The solid line represents the
prediction of the generalized Fisher scaling: ATgp
[d/€&y(d)]~*, where A = 1/v = 2. (b) Comparison of the growth
speed V of liquid IT droplets for d = 10 um (open circles) and
1.3 um (filled circles).

cous flow, the interfacial tension, the critical length of
growth, the enthalpy change upon LLT, and Boltzman’s
constant, respectively. We determined V, = 1.32 m/s,
B =533 K, AH =28 X 10° J/m?3, and o’ =
6.45 X 10715 J2/m? from the fitting to the T dependence
of V in bulk. Here, thus, we treat only Ty as an adjustable
parameter. We checked the validity of this estimation
method of Tgy for bulk TPP [8]. Ty for d = 1.3 um is
found to be about 5 K lower than that for d = 10 um [see
the dashed lines in Fig. 4(b)]. This means we can realize a
transition from liquid I to liquid II solely by increasing the
strength of the spatial confinement.

In summary, we succeeded in revealing the spatial con-
finement effects on the LLT in TPP. We found a significant
decrease of both Tgp and Ty of the LLT with increasing
the confinement strength: more than several kelvin just
with micronscale confinement and probably substantially
more under nanoscale confinement. This means that one
liquid can be transformed into another purely by spatial
confinement. The strength of confinement is found to be
characterized by the scaled confinement strength, d/&,.
The generalized Fisher’s scaling relation for Tgp (not
limited to the critical temperature) under confinement
may be applicable to LLTs in any liquids. Our finding
may have significant implications on the physical under-
standing of the LLT and the mesoscopic structure in the
liquid, whose length scale is characterized by &.
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