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We investigate the physics of dipolar bosons in a two-dimensional optical lattice. It is known that due to
the long-range character of dipole-dipole interaction, the ground state phase diagram of a gas of dipolar
bosons in an optical lattice presents novel quantum phases, like checkerboard and supersolid phases. In
this Letter, we consider the properties of the system beyond its ground state, finding that it is characterized
by a multitude of almost degenerate metastable states, often competing with the ground state. This makes
dipolar bosons in a lattice similar to a disordered system and opens possibilities of using them as quantum
memories.
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The effect of long-range interaction on the quantum
phases of ultracold gases in optical lattices has been re-
cently investigated in the literature [1,2]. Theoretical stud-
ies have pointed out that novel quantum phases, like
supersolid and checkerboard phases, arise as soon as the
interaction potential involves at least one nearest neighbor.
This issue has recently become of primary importance
because, since the achievement of Bose-Einstein conden-
sation of dipolar chromium atoms [3] and with the progress
in cooling and trapping of dipolar molecules [4], these
systems are starting to be at experimental reach.

As mentioned above, the phase diagram for nonzero
range interactions presents two main kinds of phases:
(i) superfluid supersolid phases, where large atom-number
fluctuations are found at each lattice site and an order
parameter different from zero characterizes the system
[5,6]; (ii) insulating checkerboard phases, where number
fluctuations are absent and a well defined number of atoms
is found in each lattice site. These two phases differ from
the usual superfluid and Mott insulating phases because
they present modulated patterns in the density and in the
order parameter (when different from zero). Usually, these
patterns consist of regular distributions of atoms in the
lattice sites and are characterized by a filling factor (aver-
age number of atoms per site) which is in general not
integer, even in the insulating phases.

The clear observation of such phases is a very important
experimental challenge. Although the observation of a
possible supersolid phase in 4He has been reported [7],
another proof of the existence of such quantum phases is
desired. We think that it could be eventually obtained with
samples of ultracold atomic gases in optical lattices in the
presence of long-range interaction [8].

In this Letter, we focus our attention on the insulating
states which are found in the low-tunneling region of the
phase diagram. We point out the existence of metastable
states in the system. Contrary to the standard on-site Bose-
Hubbard model, we find that beyond the ground state, there
exists a huge amount of configurations (‘‘classical’’ distri-

bution of atoms in the lattice sites), which have higher
energy but result stable against tunneling. For small lattices
(4� 4) and periodic boundary conditions, we analyze all
possible existing configurations, and we find that for given
chemical potential and tunneling parameter, there can be as
much as hundreds of metastable configurations. We then
generalize our results to large lattice sizes (typically up to
20� 20), comparable to the ones found in realistic experi-
mental situations.

Characterizing systematically the metastable states in
terms of their stability against perturbations and their
capability of being approached in the time evolution of
the system in the presence of dissipation is important in
view of the possible application of those systems as quan-
tum memories. To our knowledge, the existence of meta-
stable states has not been discussed in the literature on
extended Bose-Hubbard models so far [9]. Our results are
based on a mean-field description of the system, but we
believe that the existence of the metastable states should be
confirmed by treatments beyond mean-field which are
sensitive to local minima of the energy.

We consider a two-dimensional (2D) gas of dipolar
bosons in the presence of a 2D optical lattice, and an extra
confinement in the perpendicular direction [10]. We as-
sume a single component gas of bosons (i.e., spin, or
pseudospin, polarized) [11]. Our system is well described
by the extended Bose-Hubbard Hamiltonian
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where J is the tunneling parameter, U the on-site interac-
tion, U~‘ the components of the dipole-dipole interaction at
different relative distances, and � the chemical potential
which fixes the average atomic density. The notation hiji
represents nearest neighbors, and hhijii ~‘ represents neigh-
bors at distance ~‘.
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The on-site interaction is given by two contribu-
tions: one is arising from the s-wave scattering
Us � 4�@2a=m

R
n2�r�d3r, and the second one is due to

the on-site dipole-dipole interaction Udd � 1=�2���R
~V�q�~n2�q�d3q, being ~V�q� and ~n�q� the Fourier trans-

form of the dipole potential and density, respectively [12].
Because of the localization of the wave functions at the
bottom of the optical lattice wells, the long-range part of
the dipole-dipole interaction U~‘ is in a very good approxi-
mation given by the dipole-dipole interaction potential at
distance ~‘, U~‘ � D2�1� 3cos2��~‘��=‘

3, multiplied by the
densities ni and nj in the two sites. The quantity D is the
dipole moment and �~‘ is the angle between the orientation
of the dipoles and ~‘.

The ratio between the total on-site interaction U �
Us �Udd and the nearest neighbor dipolar interaction
UNN determines much of the physics of the system. It
can be varied by tuning the on-site dipole-dipole interac-
tion Udd from negative to positive by changing the vertical
confinement, or by changing the s-wave scattering length
via a Feshbach resonance, as recently demonstrated with
Chromium atoms [13]. Alternatively, one can consider
using heteronuclear molecules, or Rydberg atoms, which
possess much larger dipole moments and will be hopefully
soon available experimentally in optical lattices.

The dipolar interaction potential decays as the inverse
cubic power of the relative distance. In most theoretical
approaches, the range is cutoff at certain neighbors. The
precise choice of cutoff range and lattice size determines
the fractional character of the allowed ground state filling
factors (e.g., for 1NN (or 2NN) only multiples of 1=2 (or
1=4) fillings are found). In the present Letter, we consider a
range of interaction up to the 4th nearest neighbor and
focus on the case of dipoles pointing perpendicular to the
plane of the lattice, where dipole-dipole interaction be-
tween atoms in the plane of the lattice becomes isotropic,
and, in particular, always repulsive. We consider the case
of dipole-dipole interaction relatively weak (U=UNN �
20) and strong (U=UNN � 2) with respect to the on-site
interaction [14].

We study the problem in the mean-field regime, with an
approach based on the Gutzwiller ansatz. This corresponds
to writing the wave function as a product over the different
lattice sites (i) of single-site wave functions

 j��t�i �
Y
i

X
n

f�i�n �t�ji; ni: (2)

In particular, the time dependence of the Gutzwiller coef-
ficients f�i�n allows us to study the evolution of the state in
real (t) and imaginary (� � it) time
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The imaginary time evolution, which due to dissipation
is supposed to converge to the ground state of the system,
in the presence of long-range interaction happens to con-
verge often to different configurations, depending on the
exact initial conditions. This is a clear sign of the existence
of metastable states in the system. In the real time evolu-
tion, their stability manifests in typical small oscillations at
frequency !0 around a local minimum of the energy. All
the insulating metastable configurations present an insulat-
ing lobe in the J�� phase space, as explained below.
They have a finite lifetime due to the tunneling to different
metastable states, which can be very long for small tunnel-
ing parameter J and large systems. Using a path integral
approach in imaginary time [15], combined with a dynami-
cal variational method (cf. [16]), we have estimated the
tunneling time T to diverge for J ! 0 and to scale like
!0T 
 exp�Ns@� exp��Ns@J=~J� for J=~J * 0:3, Ns being
the number of sites and ~J of the order of the tip of the
insulating lobe [17].

The most convenient method to determine the phase
diagram of the metastable states is to use a mean-field
approach perturbative in ’i. Performing the mean-field
decoupling of the Hamiltonian, the tunneling part at 1st
order in the order parameter takes the form Ht �

�J
P
i� �’	i ai � �’ia

y
i �. Using the definition ’i � haie��Hi

in the limit �! 1, for a given classical configuration
described by the density distribution ni, one gets

 ’i�J �’i

�
ni�1

Uni���V
1;i
dip

�
ni

U�ni�1����V1;i
dip

�
; (4)

where V1;i
dip is the dipole-dipole interaction of one atom

placed at site i with the rest of the lattice. A classical
configuration ni is defined metastable if there exists a
region of the phase space J�� (insulating lobe), where
Eq. (4) only allows the trivial solution ’i � 0, 8i. The
insulating lobes exactly coincide with the stability regions
found with the imaginary time approach. Studying the
properties of Eq. (4), one can determine in a reliable way
the insulating lobes for a huge number of configurations,
which it would be impossible to access only by looking at
the convergence of the imaginary time evolution.

We investigate all possible configurations in 4� 4 lat-
tices with periodic boundary conditions, with all filling
factors Na=Ns (number of atoms/number of sites), ranging
from 1=Ns up to one, including the possibility of having
double occupancy of the lattice sites. The quantities of
interest that we extract from this analysis are (i) the bound-
ary of the lobes for the insulating configurations, (ii) for
each value of the chemical potential, the number of meta-
stable insulating states present at very low tunneling,
(iii) the energy of the ground state, and (iv) the energy of
all the insulating metastable states.

Those results are summarized in Figs. 1 and 2. We
observe that for weak dipole-dipole interaction (similar
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to the hard core limit), the system presents an almost exact
particle-hole duality [Figs. 1(a) and 2(a)], while for small
on-site interaction, which allows double occupation of the
lattice sites, many more configurations arise at filling
factors larger than 1=2 [Figs. 1(b) and 2(b)]. As shown in
Fig. 2(c), there is usually a gap between the ground state
and the lowest metastable state, which might allow to reach
the ground state by ramping up the optical lattice under
some adiabaticity condition. However, this feature is
strongly reduced in the case of larger lattice sizes that we
are going to discuss in the following.

The number of metastable configurations and the variety
of their patterns increase very rapidly with the lattice size.
Since for lattice sizes larger than 4� 4 it is not possible to
track down systematically all existing configurations, we
used a statistical approach where we run many times the
imaginary time evolution for the same values of the pa-
rameters, each time changing the initial conditions.
Exactly for the same reason why the metastable states
exist, the convergence of such a procedure might be very,
very slow and is not always accurate. Hence, the stability
of each of the obtained configurations is tested using the
mean-field perturbative approach described in Eq. (4), in
order to confirm the existence of an insulating lobe. In

general, we find that the configurations which differ from
very regular ones by small defects are stable in a large
region of the phase space, while the lobes corresponding to
configurations with many defects are very small. In Fig. 3,
we show the insulating lobes for three configurations
which differ from the checkerboard only by small defects.

Very important issues are the initialization and detection
of the atomic states in the lattice. One can use superlattices
in order to prepare the atoms in configurations of prefer-
ential symmetry. This idea is pursued by several experi-
mental groups [18]. We have checked that the presence of
defects is strongly reduced when a local potential energy
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FIG. 1 (color online). Phase diagram for weak and strong
dipole-dipole interaction: U=UNN � 20 (a) and U=UNN � 2
(b). The thick lines are the ground state lobes, found (for
increasing chemicals potential) for filling factors equal to all
multiples of 1=8. The thin lines of the same color are the
metastable states at the same filling factor. The other lines are
for filling factors equal to odd multiples of 1=8 [22]; some of the
metastable configurations at filling factor 1=2 (I to III) and
corresponding ground state (IV).Empty sites are light and sites
occupied with 1 atom are dark.
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FIG. 2 (color online). Number of metastable states as a func-
tion of � for weak and strong dipole-dipole interaction:
(a) U=UNN � 20 and (b) U=UNN � 2. (c) Energy of the ground
(thick line) and metastable states (thin lines) as function of � for
strong dipole-dipole interaction (U=UNN � 2). The inset shows
the energy levels at filling factor 1=2.
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FIG. 3 (color online). Phase diagram for the ground state at
filling factor 1=2 and three metastable insulating configurations
for U=UNN � 2.
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following desired patterns is added to the optical lattice.
Note that the configurations obtained in such a way will
also remain stable once the superlattice is removed, thanks
to dipole-dipole interaction.

The spatially modulated structures created in such a way
can be detected via the measurement of the noise correla-
tions of the expansion pictures [8,19,20]: the ordered
structures in the lattice give rise to different patterns in
the spatial noise correlation function, equal to the modulus
square of the Fourier transform of the density distribution
in the lattice. Such a measurement is in principle able to
recognize the defects in the density distribution, which
could be exactly reconstructed starting from the patterns
in the spatial noise correlation function. The signal to noise
ratio required for single defect recognition is beyond the
present experimental possibilities. However, averaging
over a finite number of different experimental runs pro-
ducing the same spatial distribution of atoms in the lattice,
a good signal can be obtained. In Fig. 4, we show the noise
correlations for the metastable configurations at filling
factor 1=2 shown in Fig. 1, (I) to (III).

The capability of initializing and reading out the state of
the lattice makes those systems useful for applications as
quantum memories. The controlled transfer of those sys-
tems from one configuration to another will be object of
future studies.

Alternatively to superlattices, structures obtained, e.g.,
with atoms chips or microlenses arrays, where each lattice
site can be addressed individually, could be used to prepare
the desired configuration and manipulate it. Finally, it will
be worth investigating the possibility of creating an atom-
light interface to initialize or readout the atomic state of the
system by coupling it with the polarization degrees of
freedom of light [21], for instance, exploiting the spinor
character of chromium dipolar atoms [11].
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